Search Results

Now showing 1 - 9 of 9
  • Item
    Synthesis and Characterization of Oxide Chloride Sr2VO3Cl, a Layered S = 1 Compound
    (Washington, DC : ACS Publications, 2023) Sannes, Johnny A.; Kizhake Malayil, Ranjith K.; Corredor, Laura T.; Wolter, Anja U. B.; Grafe, Hans-Joachim; Valldor, Martin
    The mixed-anion compound with composition Sr2VO3Cl has been synthesized for the first time, using the conventional high-temperature solid-state synthesis technique in a closed silica ampule under inert conditions. This compound belongs to the known Sr2TmO3Cl (Tm = Sc, Mn, Fe, Co, Ni) family, but with Tm = V. All homologues within this family can be described with the tetragonal space group P4/nmm (No. 129); from a Rietveld refinement of powder X-ray diffraction data on the Tm = V homologue, the unit cell parameters were determined to a = 3.95974(8) and c = 14.0660(4) Å, and the atomic parameters in the crystal structure could be estimated. The synthesized powder is black, implying that the compound is a semiconductor. The magnetic investigations suggest that Sr2VO3Cl is a paramagnet at high temperatures, exhibiting a μeff = 2.0 μB V-1 and antiferromagnetic (AFM) interactions between the magnetic vanadium spins (θCW = −50 K), in line with the V-O-V advantageous super-exchange paths in the V-O layers. Specific heat capacity studies indicate two small anomalies around 5 and 35 K, which however are not associated with long-range magnetic ordering. 35Cl ss-NMR investigations suggest a slow spin freezing below 4.2 K resulting in a glassy-like spin ground state.
  • Item
    Polypropylene/Layered Double Hydroxide Nanocomposites: Influence of LDH Intralayer Metal Constituents on the Properties of Polypropylene
    (Washington, DC : ACS Publications, 2017) Nagendra, Baku; Rosely, C. V. Sijla; Leuteritz, Andreas; Reuter, Uta; Gowd, E. Bhoje
    Sonication-assisted delamination of layered double hydroxides (LDHs) resulted in smaller-sized LDH nanoparticles (∼50-200 nm). Such delaminated Co-Al LDH, Zn-Al LDH, and Co-Zn-Al LDH solutions were used for the preparation of highly dispersed isotactic polypropylene (iPP) nanocomposites. Transmission electron microscopy and wide-angle X-ray diffraction results revealed that the LDH nanoparticles were well dispersed within the iPP matrix. The intention of this study is to understand the influence of the intralayer metal composition of LDH on the various properties of iPP/LDH nanocomposites. The sonicated LDH nanoparticles showed a significant increase in the crystallization rate of iPP; however, not much difference in the crystallization rate of iPP was observed in the presence of different types of LDH. The dynamic mechanical analysis results indicated that the storage modulus of iPP was increased significantly with the addition of LDH. The incorporation of different types of LDH showed no influence on the storage modulus of iPP. But considerable differences were observed in the flame retardancy and thermal stability of iPP with the type of LDH used for the preparation of nanocomposites. The thermal stability (50% weight loss temperature (T0.5)) of the iPP nanocomposite containing three-metal LDH (Co-Zn-Al LDH) is superior to that of the nanocomposites made of two-metal LDH (Co-Al LDH and Zn-Al LDH). Preliminary studies on the flame-retardant properties of iPP/LDH nanocomposites using microscale combustion calorimetry showed that the peak heat release rate was reduced by 39% in the iPP/Co-Zn-Al LDH nanocomposite containing 6 wt % LDH, which is higher than that of the two-metal LDH containing nanocomposites, iPP/Co-Al LDH (24%) and iPP/Zn-Al LDH (31%). These results demonstrated that the nanocomposites prepared using three-metal LDH showed better thermal and flame-retardant properties compared to the nanocomposites prepared using two-metal LDH. This difference might be due to the better char formation capability of three-metal LDH compared to that of two-metal LDH.
  • Item
    Tuneable Dielectric Properties Derived from Nitrogen-Doped Carbon Nanotubes in PVDF-Based Nanocomposites
    (Washington, DC : ACS Publications, 2018) Pawar, Shital Patangrao; Arjmand, Mohammad; Pötschke, Petra; Krause, Beate; Fischer, Dieter; Bose, Suryasarathi; Sundararaj, Uttandaraman
    Nitrogen-doped multiwall carbon nanotubes (N-MWNTs) with different structures were synthesized by employing chemical vapor deposition and changing the argon/ethane/nitrogen gas precursor ratio and synthesis time, and broadband dielectric properties of their poly(vinylidene fluoride) (PVDF)-based nanocomposites were investigated. The structure, morphology, and electrical conductivity of synthesized N-MWNTs were assessed via Raman spectroscopy, scanning electron microscopy, transmission electron microscopy, thermogravimetric analysis (TGA), X-ray photoelectron spectroscopy, and powder conductivity techniques. The melt compounded PVDF nanocomposites manifested significantly high real part of the permittivity (ϵ′) along with low dissipation factor (tan δϵ) in 0.1 kHz to 1 MHz frequency range, suggesting use as efficient charge-storage materials. Longer synthesis time resulted in enhanced carbon purity as well as higher thermal stability, determined via TGA analysis. The inherent electrical conductivity of N-MWNTs scaled with the carbon purity. The charge-storage ability of the developed PVDF nanocomposites was commensurate with the amount of the nitrogen heteroatom (i.e., self-polarization), carbon purity, and inherent electrical conductivity of N-MWNTs and increased with better dispersion of N-MWNTs in PVDF.
  • Item
    Enzymatic Catalysis at Nanoscale: Enzyme-Coated Nanoparticles as Colloidal Biocatalysts for Polymerization Reactions
    (Washington, DC : ACS Publications, 2017) Kreuzer, Lucas Philipp; Männel, Max Julius; Schubert, Jonas; Höller, Roland P. M.; Chanana, Munish
    Enzyme-catalyzed controlled radical polymerization represents a powerful approach for the polymerization of a wide variety of water-soluble monomers. However, in such an enzyme-based polymerization system, the macromolecular catalyst (i.e., enzyme) has to be separated from the polymer product. Here, we present a compelling approach for the separation of the two macromolecular species, by taking the catalyst out of the molecular domain and locating it in the colloidal domain, ensuring quasi-homogeneous catalysis as well as easy separation of precious biocatalysts. We report on gold nanoparticles coated with horseradish peroxidase that can catalyze the polymerization of various monomers (e.g., N-isopropylacrylamide), yielding thermoresponsive polymers. Strikingly, these biocatalyst-coated nanoparticles can be recovered completely and reused in more than three independent polymerization cycles, without significant loss of their catalytic activity.
  • Item
    Mixed Cu-Fe Sulfides Derived from Polydopamine-Coated Prussian Blue Analogue as a Lithium-Ion Battery Electrode
    (Washington, DC : ACS Publications, 2022) Bornamehr, Behnoosh; Presser, Volker; Husmann, Samantha
    Batteries employing transition-metal sulfides enable high-charge storage capacities, but polysulfide shuttling and volume expansion cause structural disintegration and early capacity fading. The design of heterostructures combining metal sulfides and carbon with an optimized morphology can effectively address these issues. Our work introduces dopamine-coated copper Prussian blue (CuPB) analogue as a template to prepare nanostructured mixed copper-iron sulfide electrodes. The material was prepared by coprecipitation of CuPB with in situ dopamine polymerization, followed by thermal sulfidation. Dopamine controls the particle size and favors K-rich CuPB due to its polymerization mechanism. While the presence of the coating prevents particle agglomeration during thermal sulfidation, its thickness demonstrates a key effect on the electrochemical performance of the derived sulfides. After a two-step activation process during cycling, the C-coated KCuFeS2electrodes showed capacities up to 800 mAh/g at 10 mA/g with nearly 100% capacity recovery after rate handling and a capacity of 380 mAh/g at 250 mA/g after 500 cycles.
  • Item
    In Situ Monitoring of Linear RGD-Peptide Bioconjugation with Nanoscale Polymer Brushes
    (Washington, DC : ACS Publications, 2017) Psarra, Evmorfia; König, Ulla; Müller, Martin; Bittrich, Eva; Eichhorn, Klaus-Jochen; Welzel, Petra B.; Stamm, Manfred; Uhlmann, Petra
    Bioinspired materials mimicking the native extracellular matrix environment are promising for biotechnological applications. Particularly, modular biosurface engineering based on the functionalization of stimuli-responsive polymer brushes with peptide sequences can be used for the development of smart surfaces with biomimetic cues. The key aspect of this study is the in situ monitoring and analytical verification of the biofunctionalization process on the basis of three complementary analytical techniques. In situ spectroscopic ellipsometry was used to quantify the amount of chemisorbed GRGDS at both the homopolymer poly(acrylic acid) (PAA) brush and the binary poly(N-isopropylacrylamide) (PNIPAAm)-PAA brushes, which was finally confirmed by an acidic hydrolysis combined with a subsequent reverse-phase high-performance liquid chromatography analysis. In situ attenuated total reflection-Fourier transform infrared spectroscopy provided a step-by-step detection of the biofunctionalization process so that an optimized protocol for the bioconjugation of GRGDS could be identified. The optimized protocol was used to create a temperature-responsive binary brush with a high amount of chemisorbed GRGDS, which is a promising candidate for the temperature-sensitive control of GRGDS presentation in further cell-instructive studies.
  • Item
    Does the Processing Method Resulting in Different States of an Interconnected Network of Multiwalled Carbon Nanotubes in Polymeric Blend Nanocomposites Affect EMI Shielding Properties?
    (Washington, DC : ACS Publications, 2018) Pawar, Shital Patangrao; Rzeczkowski, Piotr; Pötschke, Petra; Krause, Beate; Bose, Suryasarathi
    Electromagnetic interference (EMI), an unwanted phenomenon, often affects the reliability of precise electronic circuitry. To prevent this, an effective shielding is prerequisite to protect the electronic devices. In this study, an attempt was made to understand how processing of polymeric blend nanocomposites involving multiwalled carbon nanotubes (MWCNTs) affects the evolving interconnected network structure of MWCNTs and eventually their EMI shielding properties. Thereby, the overall blend morphology and especially the connectivity of the polycarbonate (PC) component, in which the MWCNTs tend to migrate, as well as the perfectness of their migration, and the state of nanotube dispersion are considered. For this purpose, blends of varying composition of PC and poly(methyl methacrylate) were chosen as a model system as they show a phase diagram with lower critical solution temperature type of characteristic. Such blends were processed in two different ways: solution mixing (from the homogeneous state) and melt mixing (in the biphasic state). In both the processes, MWCNTs (3 wt %) were mixed into the blends, and the evolved structures (after phase separation induced by annealing in solution-mixed blends) and the quenched structures (as the blends exit the extruder) were systematically studied using transmission electron microscopy (TEM). Both the set of blends were subjected to the same thermal history, however, under different conditions such as under quiescent conditions (in the case of solution mixing) and under shear (in the case of melt mixing). The electrical volume conductivity and the evolved morphologies of these blend nanocomposites were evaluated and correlated with the measured EMI shielding behavior. The results indicated that irrespective of the type of processing, the MWCNTs localized in the PC component; driven by thermodynamic factors and depending on the blend composition, sea-island, cocontinuous, and phase-inverted structures evolved. Interestingly, the better interconnected network structures of MWCNTs observed using TEM in the solution-mixed samples together with larger nanotube lengths resulted in higher EMI shielding properties (-27 dB at 18 GHz) even if slightly higher electrical volume conductivities were observed in melt-mixed samples. Moreover, the shielding was absorption-driven, facilitated by the dense network of MWCNTs in the PC component of the blends, at any given concentration of nanotubes. Taken together, this study highlights the effects of different blend nanocomposite preparation methods (solution and melt) and the developed morphology and nanotube network structure in MWCNT filled blend nanocomposites on the EMI shielding behavior.
  • Item
    D-Glucose Oxidation by Cold Atmospheric Plasma-Induced Reactive Species
    (Washington, DC : ACS Publications, 2022) Ahmadi, Mohsen; Nasri, Zahra; von Woedtke, Thomas; Wende, Kristian
    The glucose oxidation cascade is fascinating; although oxidation products have high economic value, they can manipulate the biological activity through posttranslational modification such as glycosylation of proteins, lipids, and nucleic acids. The concept of this work is based on the ability of reactive species induced by cold atmospheric plasma (CAP) in aqueous liquids and the corresponding gas-liquid interface to oxidize biomolecules under ambient conditions. Here, we report the oxidation of glucose by an argon-based dielectric barrier discharge plasma jet (kINPen) with a special emphasis on examining the reaction pathway to pinpoint the most prominent reactive species engaged in the observed oxidative transformation. Employing d-glucose and d-glucose-13C6solutions and high-resolution mass spectrometry and ESI-tandem MS/MS spectrometry techniques, the occurrence of glucose oxidation products, for example, aldonic acids and aldaric acids, glucono- and glucaro-lactones, as well as less abundant sugar acids including ribonic acid, arabinuronic acid, oxoadipic acid, 3-deoxy-ribose, glutaconic acid, and glucic acid were surveyed. The findings provide deep insights into CAP chemistry, reflecting a switch of reactive species generation with the feed gas modulation (Ar or Ar/O2with N2curtain gas). Depending on the gas phase composition, a combination of oxygen-derived short-lived hydroxyl (•OH)/atomic oxygen [O(3P)] radicals was found responsible for the glucose oxidation cascade. The results further illustrate that the presence of carbohydrates in cell culture media, gel formulations (agar), or other liquid targets (juices) modulate the availability of CAP-generated species in vitro. In addition, a glycocalyx is attached to many mammalian proteins, which is essential for the respective physiologic role. It might be questioned if its oxidation plays a role in CAP activity.
  • Item
    Changes in Selected Organic and Inorganic Compounds in the Hydrothermal Carbonization Process Liquid While in Storage
    (Washington, DC : ACS Publications, 2023) Marzban, Nader; Libra, Judy A.; Rotter, Vera Susanne; Ro, Kyoung S.; Moloeznik Paniagua, Daniela; Filonenko, Svitlana
    Although many studies have investigated the hydrothermal transformation of feedstock biomass, little is known about the stability of the compounds present in the process liquid after the carbonization process is completed. The physicochemical characteristics of hydrothermal carbonization (HTC) liquid products may change over storage time, diminishing the amount of desired products or producing unwanted contaminants. These changes may restrict the use of HTC liquid products. Here, we investigate the effect of storage temperature (20, 4, and −18 °C) and time (weeks 1-12) on structural and compositional changes of selected organic compounds and physicochemical characteristics of the process liquid from the HTC of digested cow manure. ANOVA showed that the storage time has a significant effect on the concentrations of almost all of the selected organic compounds, except acetic acid. Considerable changes in the composition of the process liquid took place at all studied temperatures, including deep freezing at −18 °C. Prominent is the polymerization of aromatic compounds with the formation of precipitates, which settle over time. This, in turn, influences the inorganic compounds present in the liquid phase by chelating or selectively adsorbing them. The implications of these results on the further processing of the process liquid for various applications are discussed.