Search Results

Now showing 1 - 10 of 188
  • Item
    Synthesis and Characterization of Oxide Chloride Sr2VO3Cl, a Layered S = 1 Compound
    (Washington, DC : ACS Publications, 2023) Sannes, Johnny A.; Kizhake Malayil, Ranjith K.; Corredor, Laura T.; Wolter, Anja U. B.; Grafe, Hans-Joachim; Valldor, Martin
    The mixed-anion compound with composition Sr2VO3Cl has been synthesized for the first time, using the conventional high-temperature solid-state synthesis technique in a closed silica ampule under inert conditions. This compound belongs to the known Sr2TmO3Cl (Tm = Sc, Mn, Fe, Co, Ni) family, but with Tm = V. All homologues within this family can be described with the tetragonal space group P4/nmm (No. 129); from a Rietveld refinement of powder X-ray diffraction data on the Tm = V homologue, the unit cell parameters were determined to a = 3.95974(8) and c = 14.0660(4) Å, and the atomic parameters in the crystal structure could be estimated. The synthesized powder is black, implying that the compound is a semiconductor. The magnetic investigations suggest that Sr2VO3Cl is a paramagnet at high temperatures, exhibiting a μeff = 2.0 μB V-1 and antiferromagnetic (AFM) interactions between the magnetic vanadium spins (θCW = −50 K), in line with the V-O-V advantageous super-exchange paths in the V-O layers. Specific heat capacity studies indicate two small anomalies around 5 and 35 K, which however are not associated with long-range magnetic ordering. 35Cl ss-NMR investigations suggest a slow spin freezing below 4.2 K resulting in a glassy-like spin ground state.
  • Item
    Saturation of the anomalous Hall effect at high magnetic fields in altermagnetic RuO2
    (Melville, NY : AIP Publ., 2023) Tschirner, Teresa; Keßler, Philipp; Gonzalez Betancourt, Ruben Dario; Kotte, Tommy; Kriegner, Dominik; Büchner, Bernd; Dufouleur, Joseph; Kamp, Martin; Jovic, Vedran; Smejkal, Libor; Sinova, Jairo; Claessen, Ralph; Jungwirth, Tomas; Moser, Simon; Reichlova, Helena; Veyrat, Louis
    Observations of the anomalous Hall effect in RuO2 and MnTe have demonstrated unconventional time-reversal symmetry breaking in the electronic structure of a recently identified new class of compensated collinear magnets, dubbed altermagnets. While in MnTe, the unconventional anomalous Hall signal accompanied by a vanishing magnetization is observable at remanence, the anomalous Hall effect in RuO2 is excluded by symmetry for the Néel vector pointing along the zero-field [001] easy-axis. Guided by a symmetry analysis and ab initio calculations, a field-induced reorientation of the Néel vector from the easy-axis toward the [110] hard-axis was used to demonstrate the anomalous Hall signal in this altermagnet. We confirm the existence of an anomalous Hall effect in our RuO2 thin-film samples, whose set of magnetic and magneto-transport characteristics is consistent with the earlier report. By performing our measurements at extreme magnetic fields up to 68 T, we reach saturation of the anomalous Hall signal at a field Hc ≃ 55 T that was inaccessible in earlier studies but is consistent with the expected Néel-vector reorientation field.
  • Item
    Amorphous-Like Ultralow Thermal Transport in Crystalline Argyrodite Cu7PS6
    (Weinheim : Wiley-VCH, 2024) Shen, Xingchen; Ouyang, Niuchang; Huang, Yuling; Tung, Yung‐Hsiang; Yang, Chun‐Chuen; Faizan, Muhammad; Perez, Nicolas; He, Ran; Sotnikov, Andrei; Willa, Kristin; Wang, Chen; Chen, Yue; Guilmeau, Emmanuel
    Due to their amorphous-like ultralow lattice thermal conductivity both below and above the superionic phase transition, crystalline Cu- and Ag-based superionic argyrodites have garnered widespread attention as promising thermoelectric materials. However, despite their intriguing properties, quantifying their lattice thermal conductivities and a comprehensive understanding of the microscopic dynamics that drive these extraordinary properties are still lacking. Here, an integrated experimental and theoretical approach is adopted to reveal the presence of Cu-dominated low-energy optical phonons in the Cu-based argyrodite Cu7PS6. These phonons yield strong acoustic-optical phonon scattering through avoided crossing, enabling ultralow lattice thermal conductivity. The Unified Theory of thermal transport is employed to analyze heat conduction and successfully reproduce the experimental amorphous-like ultralow lattice thermal conductivities, ranging from 0.43 to 0.58 W m−1 K−1, in the temperature range of 100–400 K. The study reveals that the amorphous-like ultralow thermal conductivity of Cu7PS6 stems from a significantly dominant wave-like conduction mechanism. Moreover, the simulations elucidate the wave-like thermal transport mainly results from the contribution of Cu-associated low-energy overlapping optical phonons. This study highlights the crucial role of low-energy and overlapping optical modes in facilitating amorphous-like ultralow thermal transport, providing a thorough understanding of the underlying complex dynamics of argyrodites.
  • Item
    Symmetry‐Induced Selective Excitation of Topological States in Su–Schrieffer–Heeger Waveguide Arrays
    (Weinheim : Wiley-VCH, 2023) Tang, Min; Wang, Jiawei; Valligatla, Sreeramulu; Saggau, Christian N.; Dong, Haiyun; Saei Ghareh Naz, Ehsan; Klembt, Sebastian; Lee, Ching Hua; Thomale, Ronny; van den Brink, Jeroen; Fulga, Ion Cosma; Schmidt, Oliver G.; Ma, Libo
    The investigation of topological state transition in carefully designed photonic lattices is of high interest for fundamental research, as well as for applied studies such as manipulating light flow in on-chip photonic systems. Herein, the topological phase transition between symmetric topological zero modes (TZM) and antisymmetric TZMs in Su–Schrieffer–Heeger mirror symmetric waveguides is reported. The transition of TZMs is realized by adjusting the coupling ratio between neighboring waveguide pairs, which is enabled by selective modulation of the refractive index in the waveguide gaps. Bidirectional topological transitions between symmetric and antisymmetric TZMs can be achieved with proposed switching strategy. Selective excitation of topological edge mode is demonstrated owing to the symmetry characteristics of the TZMs. The flexible manipulation of topological states is promising for on-chip light flow control and may spark further investigations on symmetric/antisymmetric TZM transitions in other photonic topological frameworks.
  • Item
    Nd─Nd Bond in Ih and D5h Cage Isomers of Nd2@C80 Stabilized by Electrophilic CF3 Addition
    (Weinheim : Wiley-VCH, 2023) Yang, Wei; Velkos, Georgios; Rosenkranz, Marco; Schiemenz, Sandra; Liu, Fupin; Popov, Alexey A.
    Synthesis of molecular compounds with metal–metal bonds between 4f elements is recognized as one of the fascinating milestones in lanthanide metallochemistry. The main focus of such studies is on heavy lanthanides due to the interest in their magnetism, while bonding between light lanthanides remains unexplored. In this work, the Nd─Nd bonding in Nd-dimetallofullerenes as a case study of metal–metal bonding between early lanthanides is demonstrated. Combined experimental and computational study proves that pristine Nd2@C80 has an open shell structure with a single electron occupying the Nd─Nd bonding orbital. Nd2@C80 is stabilized by a one-electron reduction and further by the electrophilic CF3 addition to [Nd2@C80]−. Single-crystal X-ray diffraction reveals the formation of two Nd2@C80(CF3) isomers with D5h-C80 and Ih-C80 carbon cages, both featuring a single-electron Nd─Nd bond with the length of 3.78–3.79 Å. The mutual influence of the exohedral CF3 group and endohedral metal dimer in determining the molecular structure of the adducts is analyzed. Unlike Tb or Dy analogs, which are strong single-molecule magnets with high blocking temperature of magnetization, the slow relaxation of magnetization in Nd2@Ih-C80(CF3) is detectable via out-of-phase magnetic susceptibility only below 3 K and in the presence of magnetic field.
  • Item
    Electrically-Pumped Wavelength-Tunable GaAs Quantum Dots Interfaced with Rubidium Atoms
    (Washington, DC : ACS, 2017) Huang, Huiying; Trotta, Rinaldo; Huo, Yongheng; Lettner, Thomas; Wildmann, Johannes S.; Martín-Sánchez, Javier; Huber, Daniel; Reindl, Marcus; Zhang, Jiaxiang; Zallo, Eugenio; Schmidt, Oliver G.; Rastelli, Armando
    We demonstrate the first wavelength-tunable electrically pumped source of nonclassical light that can emit photons with wavelength in resonance with the D2 transitions of 87Rb atoms. The device is fabricated by integrating a novel GaAs single-quantum-dot light-emitting diode (LED) onto a piezoelectric actuator. By feeding the emitted photons into a 75 mm long cell containing warm 87Rb vapor, we observe slow-light with a temporal delay of up to 3.4 ns. In view of the possibility of using 87Rb atomic vapors as quantum memories, this work makes an important step toward the realization of hybrid-quantum systems for future quantum networks.
  • Item
    In Situ Fabrication of Freestanding Single-Atom-Thick 2D Metal/Metallene and 2D Metal/ Metallene Oxide Membranes: Recent Developments
    (Weinheim : Wiley-VCH, 2021) Ta, Huy Q.; Mendes, Rafael G.; Liu, Yu; Yang, Xiaoqin; Luo, Jingping; Bachmatiuk, Alicja; Gemming, Thomas; Zeng, Mengqi; Fu, Lei; Liu, Lijun; Rümmeli, Mark H.
    In recent years, two-dimensional (2D) materials have attracted a lot of research interest as they exhibit several fascinating properties. However, outside of 2D materials derived from van der Waals layered bulk materials only a few other such materials are realized, and it remains difficult to confirm their 2D freestanding structure. Despite that, many metals are predicted to exist as 2D systems. In this review, the authors summarize the recent progress made in the synthesis and characterization of these 2D metals, so called metallenes, and their oxide forms, metallene oxides as free standing 2D structures formed in situ through the use of transmission electron microscopy (TEM) and scanning TEM (STEM) to synthesize these materials. Two primary approaches for forming freestanding monoatomic metallic membranes are identified. In the first, graphene pores as a means to suspend the metallene or metallene oxide and in the second, electron-beam sputtering for the selective etching of metal alloys or thick complex initial materials is employed to obtain freestanding single-atom-thick 2D metal. The data show a growing number of 2D metals/metallenes and 2D metal/ metallene oxides having been confirmed and point to a bright future for further discoveries of these 2D materials.
  • Item
    Charge‐Compensated N‐Doped π ‐Conjugated Polymers: Toward both Thermodynamic Stability of N‐Doped States in Water and High Electron Conductivity
    (Weinheim : Wiley-VCH, 2022) Borrmann, Fabian; Tsuda, Takuya; Guskova, Olga; Kiriy, Nataliya; Hoffmann, Cedric; Neusser, David; Ludwigs, Sabine; Lappan, Uwe; Simon, Frank; Geisler, Martin; Debnath, Bipasha; Krupskaya, Yulia; Al‐Hussein, Mahmoud; Kiriy, Anton
    The understanding and applications of electron-conducting π-conjugated polymers with naphtalene diimide (NDI) blocks show remarkable progress in recent years. Such polymers demonstrate a facilitated n-doping due to the strong electron deficiency of the main polymer chain and the presence of the positively charged side groups stabilizing a negative charge of the n-doped backbone. Here, the n-type conducting NDI polymer with enhanced stability of its n-doped states for prospective “in-water” applications is developed. A combined experimental–theoretical approach is used to identify critical features and parameters that control the doping and electron transport process. The facilitated polymer reduction ability and the thermodynamic stability in water are confirmed by electrochemical measurements and doping studies. This material also demonstrates a high conductivity of 10−2 S cm−1 under ambient conditions and 10−1 S cm−1 in vacuum. The modeling explains the stabilizing effects for various dopants. The simulations show a significant doping-induced “collapse” of the positively charged side chains on the core bearing a partial negative charge. This explains a decrease in the lamellar spacing observed in experiments. This study fundamentally enables a novel pathway for achieving both thermodynamic stability of the n-doped states in water and the high electron conductivity of polymers.
  • Item
    Elucidating Structure Formation in Highly Oriented Triple Cation Perovskite Films
    (Weinheim : Wiley-VCH, 2023) Telschow, Oscar; Scheffczyk, Niels; Hinderhofer, Alexander; Merten, Lena; Kneschaurek, Ekaterina; Bertram, Florian; Zhou, Qi; Löffler, Markus; Schreiber, Frank; Paulus, Fabian; Vaynzof, Yana
    Metal halide perovskites are an emerging class of crystalline semiconductors of great interest for application in optoelectronics. Their properties are dictated not only by their composition, but also by their crystalline structure and microstructure. While significant efforts are dedicated to the development of strategies for microstructural control, significantly less is known about the processes that govern the formation of their crystalline structure in thin films, in particular in the context of crystalline orientation. This work investigates the formation of highly oriented triple cation perovskite films fabricated by utilizing a range of alcohols as an antisolvent. Examining the film formation by in situ grazing-incidence wide-angle X-ray scattering reveals the presence of a short-lived highly oriented crystalline intermediate, which is identified as FAI-PbI2-xDMSO. The intermediate phase templates the crystallization of the perovskite layer, resulting in highly oriented perovskite layers. The formation of this dimethylsulfoxide (DMSO) containing intermediate is triggered by the selective removal of N,N-dimethylformamide (DMF) when alcohols are used as an antisolvent, consequently leading to differing degrees of orientation depending on the antisolvent properties. Finally, this work demonstrates that photovoltaic devices fabricated from the highly oriented films, are superior to those with a random polycrystalline structure in terms of both performance and stability.
  • Item
    Intermixing-Driven Surface and Bulk Ferromagnetism in the Quantum Anomalous Hall Candidate MnBi6Te10
    (Weinheim : Wiley-VCH, 2023) Tcakaev, Abdul‐Vakhab; Rubrecht, Bastian; Facio, Jorge I.; Zabolotnyy, Volodymyr B.; Corredor, Laura T.; Folkers, Laura C.; Kochetkova, Ekaterina; Peixoto, Thiago R. F.; Kagerer, Philipp; Heinze, Simon; Bentmann, Hendrik; Green, Robert J.; Gargiani, Pierluigi; Valvidares, Manuel; Weschke, Eugen; Haverkort, Maurits W.; Reinert, Friedrich; van den Brink, Jeroen; Büchner, Bernd; Wolter, Anja U. B.; Isaeva, Anna; Hinkov, Vladimir
    The recent realizations of the quantum anomalous Hall effect (QAHE) in MnBi2Te4 and MnBi4Te7 benchmark the (MnBi2Te4)(Bi2Te3)n family as a promising hotbed for further QAHE improvements. The family owes its potential to its ferromagnetically (FM) ordered MnBi2Te4 septuple layers (SLs). However, the QAHE realization is complicated in MnBi2Te4 and MnBi4Te7 due to the substantial antiferromagnetic (AFM) coupling between the SLs. An FM state, advantageous for the QAHE, can be stabilized by interlacing the SLs with an increasing number n of Bi2Te3 quintuple layers (QLs). However, the mechanisms driving the FM state and the number of necessary QLs are not understood, and the surface magnetism remains obscure. Here, robust FM properties in MnBi6Te10 (n = 2) with Tc ≈ 12 K are demonstrated and their origin is established in the Mn/Bi intermixing phenomenon by a combined experimental and theoretical study. The measurements reveal a magnetically intact surface with a large magnetic moment, and with FM properties similar to the bulk. This investigation thus consolidates the MnBi6Te10 system as perspective for the QAHE at elevated temperatures.