Search Results

Now showing 1 - 2 of 2
  • Item
    Drivers of sustainable intensification in Kenyan rural and peri-urban vegetable production
    (London : Taylor & Francis, 2018) Kurgat, Barnabas K.; Ngenoh, Evans; Bett, Hillary K.; Stöber, Silke; Mwonga, Samuel; Lotze-Campen, Hermann; Rosenstock, Todd S.
    Sustainable intensification promotes environmentally sound and productive agriculture. However, use of sustainable intensification practices (SIPs) is low in many sub-Sharan African countries. This study examined the adoption of SIPs in Kenyan rural and peri-urban vegetable production to understand the scale of and underlying factors in the use of SIPs. A multistage sampling technique was employed to randomly select 685 rural and peri-urban vegetable farm households. Household data was then collected and anaylsed for four practices namely improved irrigation, integrated soil fertility, organic manure and crop diversification using a pre-tested structured questionnaire. A multivariate probit model was run to model simultaneous interdependent adoption decisions. Adoption of organic manure and African indigenous vegetables (AIV) diversification was high in both rural and peri-urban areas. However, adoption of improved irrigation systems and integrated soil fertility management was low, and even significantly lower in rural areas than in peri-urban areas (p < 0.041). Similarly, adoption intensity of SIPs was lower in rural areas than in peri-urban areas. Furthermore, the findings also show complementarities and substitutabilities between SIPs. Market integration, the farm location and household income were the major factors heavily influencing the adoption of most SIPs. Policies and programmes that seek to build household financial capital base and integrate farm households into effective and efficient vegetable markets need to be formulated and implemented in order to enhance adoption of SIPs in AIV production.
  • Item
    Case studies of the wind field around Ny-Ålesund, Svalbard, using unmanned aircraft
    (London : Taylor & Francis, 2022) Schön, Martin; Suomi, Irene; Altstädter, Barbara; van Kesteren, Bram; zum Berge, Kjell; Platis, Andreas; Wehner, Birgit; Lampert, Astrid; Bange, Jens
    The wind field in Arctic fjords is strongly influenced by glaciers, local orography and the interaction between sea and land. Ny-Ålesund, an important location for atmospheric research in the Arctic, is located in Kongsfjorden, a fjord with a complex local wind field that influences measurements in Ny-Ålesund. Using wind measurements from UAS (unmanned aircraft systems), ground measurements, radiosonde and reanalysis data, characteristic processes that determine the wind field around Ny-Ålesund are identified and analysed. UAS measurements and ground measurements show, as did previous studies, a south-east flow along Kongsfjorden, dominating the wind conditions in Ny-Ålesund. The wind measured by the UAS in a valley 1 km west of Ny-Ålesund differs from the wind measured at the ground in Ny-Ålesund. In this valley, we identify a small-scale catabatic flow from the south to south-west as the cause for this difference. Case studies show a backing (counterclockwise rotation with increasing altitude) of the wind direction close to the ground. A katabatic flow is measured near the ground, with a horizontal wind speed up to 5 m s-1. Both the larger-scale south-east flow along the fjord and the local katabatic flows lead to a highly variable wind field, so ground measurements and weather models alone give an incomplete picture. The comparison of UAS measurements, ground measurements and weather conditions analysis using a synoptic model is used to show that the effects measured in the case studies play a role in the Ny-Ålesund wind field in spring.