Search Results

Now showing 1 - 5 of 5
  • Item
    The role of spatial variability of soil moisture for modelling surface runoff generation at the small catchment scale
    (Göttingen : Copernicus GmbH, 1999) Bronstert, A.; Bárdossy, A.
    The effects of spatial variability of soil moisture on surface runoff generation at the hillslope and small catchment scale were studied. The model used is physically based accounting for the relevant hydrological processes during storm runoff periods. A case study investigating the effects on runoff generation in a loessy small catchment is presented. In this study the storm rainfall response was modelled using different distribution patterns of the initial soil moisture content, and where different initial soil moisture fields were generated by using both interpolation methods and stochastic simulation methods. It is shown that spatial variability of pre-event soil moisture results in an increase in runoff production compared to averaged values. It is of particular importance to note the combined organised/stochastic variability features, that is, the superposition of systematic and random features of soil moisture dominate local generation of surface runoff. In general one can say that the stronger the organised heterogeneity is, the more important is an adequate and refined interpolation technique which is capable of accounting for complex spatial trends. The effects of soil moisture variations are of particular importance for storms, where the produced runoff volume is just a small fraction of precipitation.
  • Item
    Reduction of biosphere life span as a consequence of geodynamics
    (Abingdon : Taylor and Francis Ltd., 2000) Franck, S.; Block, A.; Von Bloh, W.; Bounama, C.; Schellnhuber, H.J.; Svirezhev, Y.
    The long-term co-evolution of the geosphere-biosphere complex from the Proterozoic up to 1.5 billion years into the planet's future is investigated using a conceptual earth system model including the basic geodynamic processes. The model focusses on the global carbon cycles as mediated by life and driven by increasing solar luminosity and plate tectonics. The main CO2 sink, the weathering of silicates, is calculated as a function of biologic activity, global run-off and continental growth. The main CO2 source, tectonic processes dominated by sea-floor spreading, is determined using a novel semi-empirical scheme. Thus, a geodynamic extension of previous geostatic approaches can be achieved. As a major result of extensive numerical investigations, the 'terrestrial life corridor', i.e., the biogeophysical domain supporting a photosynthesis-based ecosphere in the planetary past and in the future, can be identified. Our findings imply, in particular, that the remaining life-span of the biosphere is considerably shorter (by a few hundred million years) than the value computed with geostatic models by other groups. The 'habitable-zone concept' is also revisited, revealing the band of orbital distances from the sun warranting earth-like conditions. It turns out that this habitable zone collapses completely in some 1.4 billion years from now as a consequence of geodynamics.
  • Item
    Self-stabilization of the biosphere under global change: A tutorial geophysiological approach
    (Abingdon : Taylor and Francis Ltd., 1997) Von Bloh, W.; Block, A.; Schellnhuber, H.J.
    A 2-dimensional extension of the simple Lovelock-Watson model for geosphere-biosphere feed-back is introduced and discussed. Our enriched version also takes into account various pertinent physical, biological, and civilisatory processes like lateral heat transport, species competition, mutation, germination, and habitat fragmentation. The model is used as a caricature of the Earth System, which allows potential response mechanisms of the biosphere to environmental stress (as generated, e.g., by global warming or anthropogenic land-cover change) to be investigated qualitatively. Based on a cellular automaton representation of the system, extensive calculations are performed. They reveal a number of remarkable and, partially, counter-intuitive phenomena: our model biosphere is able to control almost perfectly the geophysical conditions for its own existence. If the environmental stress exceeds certain thresholds, however, life breaks down on the artificial planet via a first-order phase transition, i.e., in a non-reversible way. There is a close connection between self-stabilizing capacity, biodiversity and geometry of habitat fragmentation. It turns out, in particular, that unrestricted Darwinian competition, which reduces the number of co-existing species, is the best guarantee for survival of the artificial ecosphere as a whole.
  • Item
    Wirkung von Klimaänderungen auf Vegetation: Entwicklung eines allgemeinen Modells für die Klimafolgenforschung : Abschlußbericht
    (Potsdam : Potsdam-Institut für Klimaforschung, 1999) Cramer, Wolfgang
    [no abstract available]
  • Item
    Untersuchungen zur Verwendung von Ergebnissen verschiedener Klimamodelltypen als Antrieb in Ökosystemmodellen : Abschlußbericht zum Forschungsprojekt
    (Hannover : Technische Informationsbibliothek (TIB), 2000) Werner, P.C.; Bürger, G.; Gerstengarbe, F.-W.
    [no abstract available]