Search Results

Now showing 1 - 10 of 16
  • Item
    Sporadic Ca and Ca+ layers at mid-latitudes: Simultaneous observations and implications for their formation
    (München : European Geopyhsical Union, 2001) Gerding, M.; Alpers, M.; Höffner, J.; von Zahn, U.
    We report on the observations of 188 sporadic layers of either Ca atoms and/or Ca ions that we have observed during 112 nights of lidar soundings of Ca, and 58 nights of Ca+ soundings, at Kühlungsborn, Germany (54° N, 12° E). The Ca+ soundings have been performed simultaneously and in a common volume with the Ca soundings by two separate lidars. Correlations between sporadic neutral and ionized metal layers are demonstrated through four case studies. A systematic study of the variations of occurrence of sporadic Ca and Ca+ layers reveals that neutral and ionized Ca layers are not as closely correlated as expected earlier: (a) The altitude distribution shows the simultaneous occurrence of both sporadic Ca and Ca+ layers to be most likely only in the narrow altitude range between 90 and 95 km. Above that region, in the lower thermosphere, the sporadic ion layers are much more frequent than atom layers. Below 90 km only very few sporadic layers have been observed; (b) The seasonal variation of sporadic Ca layers exhibits a minimum of occurrence in summer, while sporadic Ca+ layers do not show a significant seasonal variation (only the dense Ca+ layers appear to have a maximum in summer). At mid-latitudes sporadic Ca layers are more frequent than sporadic layers of other atmospheric metals like Na or K. For the explanation of our observations new formation mechanisms are discussed.
  • Item
    Observation of an unusual mid-stratospheric aerosol layer in the Arctic: Possible sources and implications for polar vortex dynamics
    (München : European Geopyhsical Union, 2003) Gerding, M.; Baumgarten, G.; Blum, U.; Thayer, J.P.; Fricke, K.-H.; Neuber, R.; Fiedler, J.
    By the beginning of winter 2000/2001, a mysterious stratospheric aerosol layer had been detected by four different Arctic lidar stations. The aerosol layer was observed first on 16 November 2000, at an altitude of about 38 km near Søndre Strømfjord, Greenland (67° N, 51° W) and on 19 November 2000, near Andenes, Norway (69° N, 16° E). Subsequently, in early December 2000, the aerosol layer was observed near Kiruna, Sweden (68° N, 21° E) and Ny-Ålesund, Spitsbergen (79° N, 12° E). No mid-latitude lidar station observed the presence of aerosols in this altitude region. The layer persisted throughout the winter 2000/2001, at least up to 12 February 2001. In November 2000, the backscatter ratio at a wavelength of 532 nm was up to 1.1, with a FWHM of about 2.5 km. By early February 2001, the layer had sedimented from an altitude of 38 km to about 26 km. Measurements at several wavelengths by the ALOMAR and Koldewey lidars indicate the particle size was between 30 and 50 nm. Depolarisation measurements reveal that the particles in the layer are aspherical, hence solid. In the mid-stratosphere, the ambient atmospheric temperature was too high to support in situ formation or existence of cloud particles consisting of ice or an acid-water solution. Furthermore, in the year 2000 there was no volcanic eruption, which could have injected aerosols into the upper stratosphere. Therefore, other origins of the aerosol, such as meteoroid debris, condensed rocket fuel, or aerosols produced under the influence of charged solar particles, will be discussed in the paper. Trajectory calculations illustrate the path of the aerosol cloud within the polar vortex and are used to link the observations at the different lidar sites. From the descent rate of the layer and particle sedimentation rates, the mean down-ward motion of air within the polar vortex was estimated to be about 124 m/d between 35 and 30 km, with higher values at the edge of the vortex.
  • Item
    On the longitudinal structure of the transient day-to-day variation of the semidiurnal tide in the mid-latitude lower thermosphere - I. Winter season
    (München : European Geopyhsical Union, 2001) Merzlyakov, E.G.; Portnyagin, Yu.I.; Jacobi, C.; Mitchell, N.J.; Muller, H.G.; Manson, A.H.; Fachrutdinova, A.N.; Singer, W.; Hoffmann, P.
    The longitudinal structure of the day-to-day variations of semidiurnal tide amplitudes is analysed based on coordinated mesosphere/lower thermosphere wind measurements at several stations during three winter campaigns. Possible excitation sources of these variations are discussed. Special attention is given to a nonlinear interaction between the semidiurnal tide and the day-to-day mean wind variations. Data processing includes the S-transform analysis which takes into account transient behaviour of secondary waves. It is shown that strong tidal modulations appear during a stratospheric warming and may be caused by aperiodic mean wind variations during this event.
  • Item
    Absolute density measurements in the middle atmosphere
    (München : European Geopyhsical Union, 2002) Rapp, M.; Gumbel, J.; Lübken, F.-J.
    In the last ten years a total of 25 sounding rockets employing ionization gauges have been launched at high latitudes ( ~ 70° N) to measure total atmospheric density and its small scale fluctuations in an altitude range between 70 and 110 km. While the determination of small scale fluctuations is unambiguous, the total density analysis has been complicated in the past by aerodynamical disturbances leading to densities inside the sensor which are enhanced compared to atmospheric values. Here, we present the results of both Monte Carlo simulations and wind tunnel measurements to quantify this aerodynamical effect. The comparison of the resulting ‘ram-factor’ profiles with empirically determined density ratios of ionization gauge measurements and falling sphere measurements provides excellent agreement. This demonstrates both the need, but also the possibility, to correct aerodynamical influences on measurements from sounding rockets. We have determined a total of 20 density profiles of the mesosphere-lower-thermosphere (MLT) region. Grouping these profiles according to season, a listing of mean density profiles is included in the paper. A comparison with density profiles taken from the reference atmospheres CIRA86 and MSIS90 results in differences of up to 40%. This reflects that current reference atmospheres are a significant potential error source for the determination of mixing ratios of, for example, trace gas constituents in the MLT region.
  • Item
    First observation of one noctilucent cloud by a twin lidar in two different directions
    (München : European Geopyhsical Union, 2002) Baumgarten, G.; Lübken, F.-J.; Fricke, K.-H.
    In the early morning hours of 14 July 1999, a noctilucent cloud (NLC) was observed simultaneously by the two branches of a twin lidar system located at the ALOMAR observatory in northern Norway (69° N). The telescopes of the two lidars were pointing vertical (L^) and off the zenith by 30° (L30°). The two lidars detected an enhancement in the altitude profile of backscattered light (relative to the molecular background) for more than 5 h, starting approximately at 01:00 UT. These measurements constitute the detection of one NLC by two lidars under different directions and allow for a detailed study of the morphology of the NLC layer. A cross-correlation analysis of the NLC signals demonstrates that the main structures seen by both lidars are practically identical. This implies that a temporal evolution of the microphysics within the NLC during its drift from one lidar beam to the other is negligible. From the time delay of the NLC structures, a drift velocity of 55–65 m/s is derived which agrees nicely with radar wind measurements. During the observation period, the mean NLC altitude decreases by ~0.5 km/h (=14 cm/s) at both observation volumes. Further-more, the NLC is consistently observed approximately 500 m lower in altitude at L30° compared to L^. Supplementing these data by observations from rocket-borne and ground-based instruments, we show that the general downward progression of the NLC layer through the night, as seen by both lidars, is caused by a combination of particle sedimentation by 4–5 cm/s and a downward directed vertical wind by 9–10 cm/s, whereas a tilt of the layer in drift direction can be excluded.
  • Item
    Particle formation at a continental background site: Comparison of model results with observations
    (München : European Geopyhsical Union, 2003) Uhrner, U.; Birmili, W.; Stratmann, F.; Wilck, M.; Ackermann, I.J.; Berresheim, H.
    At Hohenpeissenberg (47° 48' N, 11° 07' E, 988 m asl), a rural site 200--300~m higher than the surrounding terrain, sulphuric acid concentrations, particle size distributions, and other trace gas concentrations were measured over a two and a half year period. Measured particle number concentrations and inferred particle surface area concentrations were compared with box-model simulations for 12 carefully selected data sets collected during the HAFEX experiment (Birmili et al., 2003). The 12 cases were selected after meteorological and aerosol dynamical criteria in order to justify the use of a box-model. The aerosol model included a binary sulphuric acid water nucleation scheme. Calculated nucleation rates were corrected with a factor to match measured and calculated particle number concentrations. For the investigated 12 data sets, the correction factors were smallest for measurements made under stable thermal stratification and low wind conditions, i.e. conditions that are frequently encountered during winter. Correction factors were largest for measurements made under strong convective conditions. Our comparison of measured and simulated particle size distributions suggests that the particle formation process maybe strongly influenced by mixing processes driven by thermal convection and/or wind sheer.
  • Item
    Hygroscopic properties of different aerosol types over the Atlantic and Indian Oceans
    (München : European Geopyhsical Union, 2003) Maßling, A.; Wiedensohler, A.; Busch, B.; Neusüß, C.; Quinn, P.; Bates, T.; Covert, D.
    Hygroscopic properties of atmospheric particles were studied in the marine tropospheric boundary layer over the Atlantic and Indian Oceans during two consecutive field studies: the Aerosols99 cruise (Atlantic Ocean) from 15 January to 20 February 1999, and the INDOEX cruise (Indian Ocean Experiment) from 23 February to 30 March 1999. The hygroscopic properties were compared to optical and chemical properties, such as absorption, chemical inorganic composition, and mass concentration of organic and elemental carbon, to identify the influence of these parameters on hygroscopicity. During the two field studies, four types of aerosol-sampling instruments were used on board the NOAA (National Oceanic and Atmospheric Administration) Research Vessel Ronald H. Brown: Hygroscopicity Tandem Differential Mobility Analyzer (HTDMA), seven-stage cascade impactor, two-stage cascade impactor, and Particle Soot Absorption Photometer (PSAP). The HTDMA was used to determine the hygroscopic properties of atmospheric particles at initial dry sizes (Dp) of 50, 150, and 250 nm and at relative humidities (RH) of 30, 55, 75, and 90%. Simultaneously, a seven-stage cascade impactor of which 3 stages were in the sub-mm size range was used to determine the molar composition of the major inorganic ions such as ammonium and sulfate ions. A two-stage cascade impactor (1 in the sub-mm size range, 1 in the sup-mm size range) was used to determine the mass concentration of organic and elemental carbon. The PSAP was used (at a wavelength of 565 nm) to measure the light absorption coefficient of the aerosol. During the two field studies, air masses of several different origins passed the ship's cruise path. The occurrence of different air masses was classified into special time periods signifying the origin of the observed aerosol. All time periods showed a group of particles with high hygroscopic growth. The measured average hygroscopic growth factors defined by the ratio of dry and wet particle diameter at 90% RH ranged from 1.6 to 2.0, depending on the dry particle size and on the type of air mass. Particles with low hygroscopic growth occurred only when continentally influenced air masses arrived at the ship's position. Distinctions in hygroscopic growth of particles of different air masses were more significant for small relative humidities (30% or 55% RH). High concentrations of elemental carbon corresponded with high light absorption coefficients and with the occurrence of less-hygroscopic and nearly hydrophobic particle fractions in the hygroscopic growth distributions. A key finding is that clean marine air masses that had no land contact for five to six days could clearly be distinguished from polluted air masses that had passed over a continent several days before reaching the ship.
  • Item
    Dependence of solar radiative forcing of forest fire aerosol on ageing and state of mixture
    (München : European Geopyhsical Union, 2003) Fiebig, M.; Stohl, A.; Wendisch, M.; Eckhardt, S.; Petzold, A.
    During airborne in situ measurements of particle size distributions in a forest fire plume originating in Northern Canada, an accumulation mode number mean diameter of 0.34 mm was observed over Lindenberg, Germany on 9 August 1998. Realizing that this is possibly the largest value observed for this property in a forest fire plume, scenarios of plume ageing by coagulation are considered to explain the observed size distribution, concluding that the plume dilution was inhibited in parts of the plume. The uncertainties in coagulation rate and transition from external to internal mixture of absorbing forest fire and non-absorbing background particles cause uncertainties in the plume's solar instantaneous radiative forcing of 20-40% and of a factor of 5-6, respectively. Including information compiled from other studies on this plume, it is concluded that the plume's characteristics are qualitatively consistent with a radiative-convective mixed layer.
  • Item
    First observations of noctilucent clouds by lidar at Svalbard, 78° N
    (München : European Geopyhsical Union, 2003) Höffner, J.; Fricke-Begemann, C.; Lübken, F.-J.
    In summer 2001 a potassium lidar was installed near Longyearbyen (78° N) on the north polar island of Spitsbergen which is part of the archipelago Svalbard. At the same place a series of meteorological rockets ("falling spheres", FS) were launched which gave temperatures from the lower thermosphere to the stratosphere. The potassium lidar is capable of detecting noctilucent clouds (NLCs) and of measuring temperatures in the lower thermosphere, both under daylight conditions. In this paper we give an overview on the NLC measurements (the first at this latitude) and compare the results with temperatures from meteorological rockets which have been published recently (Lübken and Mülleman, 2003) NLCs were observed from 12 June (the first day of operation) until 12 August when a period of bad weather started. When the lidar was switched on again on 26 August, no NLC was observed. The mean occurrence frequency in the period 12 June -- 12 August ("lidar NLC period") is 77%. The mean of all individual NLC peak altitudes is 83.6 km (variability: 1.1 km). The mean peak NLC altitude does not show a significant variation with season. The average top and bottom altitude of the NLC layer is 85.1 and 82.5 km, respectively, with a variability of ~1.2 km. The mean of the maximum volume backscatter coefficient bmax at our wavelength of 770 nm is 3.9 x 10-10/m/sr with a large variability of ±3.8 x 10-10/m/sr. Comparison of NLC characteristics with measurements at ALOMAR (69° N) shows that the peak altitude and the maximum volume backscatter coefficient are similar at both locations but NLCs occur more frequently at higher latitudes. Simultaneous temperature and NLC measurements are available for 3 flights and show that the NLC layer occurs in the lower part of the height range with super-saturation. The NLC peak occurs over a large range of degree of saturation (S) whereas most models predict the peak at S = 1. This demonstrates that steady-state considerations may not be applicable when relating individual NLC properties to background conditions. On the other hand, the mean variation of the NLC appearance with height and season is in agreement with the climatological variation of super-saturation derived from the FS temperature measurements.
  • Item
    New-particle formation events in a continental boundary layer: First results from the SATURN experiment
    (München : European Geopyhsical Union, 2003) Stratmann, F.; Siebert, H.; Spindler, G.; Wehner, B.; Althausen, D.; Heintzenberg, J.; Hellmuth, O.; Rinke, R.; Schmieder, U.; Seidel, C.; Tuch, T.; Uhrner, U.; Wiedensohler, A.; Wandinger, U.; Wendisch, M.; Schell, D.; Stohl, A.
    During the SATURN experiment, which took place from 27 May to 14 June 2002, new particle formation in the continental boundary layer was investigated. Simultaneous ground-based and tethered-balloon-borne measurements were performed, including meteorological parameters, particle number concentrations and size distributions, gaseous precursor concentrations and SODAR and LIDAR observations. Newly formed particles were observed inside the residual layer, before the break-up process of the nocturnal inversion, and inside the mixing layer throughout the break-up of the nocturnal inversion and during the evolution of the planetary boundary layer.