Search Results

Now showing 1 - 2 of 2
  • Item
    Modelling the wintertime response to upper tropospheric and lower stratospheric ozone anomalies over the North Atlantic and Europe
    (Göttingen : Copernicus GmbH, 2003) Kirchner, I.; Peters, D.
    During boreal winter months, mean longitude-dependent ozone changes in the upper troposphere and lower stratosphere are mainly used by different ozone transport by planetary waves. The response to radiative perturbation induced by these ozone changes near the tropopause on the circulation is unclear. This response is investigated with the ECHAM4 general circulation model in a sensitivity study. In the simulation two different mean January realizations of the ozone field are implemented in ECHAM4. Both ozone fields are estimated on the basis of the observed mean January planetary wave structure of the 1980s. The first field represents a 14-year average (reference, 1979-1992) and the second one represents the mean ozone field change (anomaly, 1988-92) in boreal extra-tropics during the end of the 1980s. The model runs were carried out pairwise, with identical initial conditions for both ozone fields. Five statistically independent experiments were performed, forced with the observed sea surface temperatures for the period 1988 to 1992. The results support the hypothesis that the zonally asymmetric ozone changes of the 80s triggered a systematic alteration of the circulation over the North Atlantic - European region. It is suggested that this feedback process is important for the understanding of the decadal coupling between troposphere and stratosphere, as well as between subtropics and extra-tropics in winter.
  • Item
    On freshwater-dependent bifurcations in box models of the interhemispheric thermohaline circulation
    (Abingdon : Taylor and Francis Ltd., 2002) Titz, S.; Kuhlbrodt, T.; Rahmstorf, S.; Feudel, U.
    Conceptual box models of the interhemispheric thermohaline circulation are studied with respect to bifurcations. Freshwater fluxes are the main control parameters of the system: they determine the stable states and transitions between stable states of the large-scale thermohaline circulation. In this study of interhemispheric box models both numerical and analytical methods are used to investigate transition mechanisms of the thermohaline circulation. The box model examined first is an interhemispheric four-box model. It is shown that the two bifurcations where the present THC can become unstable, the saddle-node and the Hopf bifurcation, depend in a different way on hemispheric freshwater fluxes. A reduction of the model variables leads to the conclusion that two fixed freshwater fluxes between three surface boxes are the model feature responsible for the bifurcation behavior found. The significance of the Hopf bifurcation for the stability of the thermohaline circulation is discussed.