Search Results

Now showing 1 - 10 of 18
  • Item
    A hindcast simulation of Arctic and Antarctic sea ice variability, 1955-2001
    (Tromsø : Norwegian Polar Institute, 2003) Fichefet, T.; Goosse, H.; Morales Maqueda, M.A.
    A hindcast simulation of the Arctic and Antarctic sea ice variability during 1955-2001 has been performed with a global, coarse resolution ice-ocean model driven by the National Centers for Environmental Prediction/National Center for Atmospheric Research reanalysis daily surface air temperatures and winds. Both the mean state and variability of the ice packs over the satellite observing period are reasonably well reproduced by the model. Over the 47-year period, the simulated ice area (defined as the total ice-covered oceanic area) in each hemisphere experiences large decadal variability together with a decreasing trend of ∼1% per decade. In the Southern Hemisphere, this trend is mostly caused by an abrupt retreat of the ice cover during the second half of the 1970s and the beginning of the 1980s. The modelled ice volume also exhibits pronounced decadal variability, especially in the Northern Hemisphere. Besides these fluctuations, we detected a downward trend in Arctic ice volume of 1.8% per decade and an upward trend in Antarctic ice volume of 1.5% per decade. However, caution must be exercised when interpreting these trends because of the shortness of the simulation and the strong decadal variations. Furthermore, sensitivity experiments have revealed that the trend in Antarctic ice volume is model-dependent.
  • Item
    The role of spatial variability of soil moisture for modelling surface runoff generation at the small catchment scale
    (Göttingen : Copernicus GmbH, 1999) Bronstert, A.; Bárdossy, A.
    The effects of spatial variability of soil moisture on surface runoff generation at the hillslope and small catchment scale were studied. The model used is physically based accounting for the relevant hydrological processes during storm runoff periods. A case study investigating the effects on runoff generation in a loessy small catchment is presented. In this study the storm rainfall response was modelled using different distribution patterns of the initial soil moisture content, and where different initial soil moisture fields were generated by using both interpolation methods and stochastic simulation methods. It is shown that spatial variability of pre-event soil moisture results in an increase in runoff production compared to averaged values. It is of particular importance to note the combined organised/stochastic variability features, that is, the superposition of systematic and random features of soil moisture dominate local generation of surface runoff. In general one can say that the stronger the organised heterogeneity is, the more important is an adequate and refined interpolation technique which is capable of accounting for complex spatial trends. The effects of soil moisture variations are of particular importance for storms, where the produced runoff volume is just a small fraction of precipitation.
  • Item
    Cascade-based disaggregation of continuous rainfall time series: The influence of climate
    (Göttingen : Copernicus GmbH, 2001) Güntner, A.; Olsson, J.; Calver, A.; Gannon, B.
    Rainfall data of high temporal resolution are required in a multitude of hydrological applications. In the present paper, a temporal rainfall disaggregation model is applied to convert daily time series into an hourly resolution. The model is based on the principles of random multiplicative cascade processes. Its parameters are dependent on (1) the volume and (2) the position in the rainfall sequence of the time interval with rainfall to be disaggregated. The aim is to compare parameters and performance of the model between two contrasting climates with different rainfall generating mechanisms, a semi-arid tropical (Brazil) and a temperate (United Kingdom) climate. In the range of time scales studied, the scale-invariant assumptions of the model are approximately equally well fulfilled for both climates. The model parameters differ distinctly between climates, reflecting the dominance of convective processes in the Brazilian rainfall and of advective processes associated with frontal passages in the British rainfall. In the British case, the parameters exhibit a slight seasonal variation consistent with the higher frequency of convection during summer. When applied for disaggregation, the model reproduces a range of hourly rainfall characteristics with a high accuracy in both climates. However, the overall model performance is somewhat better for the semi-arid tropical rainfall. In particular, extreme rainfall in the UK is overestimated whereas extreme rainfall in Brazil is well reproduced. Transferability of parameters in time is associated with larger uncertainty in the semi-arid climate due to its higher interannual variability and lower percentage of rainy intervals. For parameter transferability in space, no restrictions are found between the Brazilian stations whereas in the UK regional differences are more pronounced. The overall high accuracy of disaggregated data supports the potential usefulness of the model in hydrological applications.
  • Item
    Reduction of biosphere life span as a consequence of geodynamics
    (Abingdon : Taylor and Francis Ltd., 2000) Franck, S.; Block, A.; Von Bloh, W.; Bounama, C.; Schellnhuber, H.J.; Svirezhev, Y.
    The long-term co-evolution of the geosphere-biosphere complex from the Proterozoic up to 1.5 billion years into the planet's future is investigated using a conceptual earth system model including the basic geodynamic processes. The model focusses on the global carbon cycles as mediated by life and driven by increasing solar luminosity and plate tectonics. The main CO2 sink, the weathering of silicates, is calculated as a function of biologic activity, global run-off and continental growth. The main CO2 source, tectonic processes dominated by sea-floor spreading, is determined using a novel semi-empirical scheme. Thus, a geodynamic extension of previous geostatic approaches can be achieved. As a major result of extensive numerical investigations, the 'terrestrial life corridor', i.e., the biogeophysical domain supporting a photosynthesis-based ecosphere in the planetary past and in the future, can be identified. Our findings imply, in particular, that the remaining life-span of the biosphere is considerably shorter (by a few hundred million years) than the value computed with geostatic models by other groups. The 'habitable-zone concept' is also revisited, revealing the band of orbital distances from the sun warranting earth-like conditions. It turns out that this habitable zone collapses completely in some 1.4 billion years from now as a consequence of geodynamics.
  • Item
    Self-stabilization of the biosphere under global change: A tutorial geophysiological approach
    (Abingdon : Taylor and Francis Ltd., 1997) Von Bloh, W.; Block, A.; Schellnhuber, H.J.
    A 2-dimensional extension of the simple Lovelock-Watson model for geosphere-biosphere feed-back is introduced and discussed. Our enriched version also takes into account various pertinent physical, biological, and civilisatory processes like lateral heat transport, species competition, mutation, germination, and habitat fragmentation. The model is used as a caricature of the Earth System, which allows potential response mechanisms of the biosphere to environmental stress (as generated, e.g., by global warming or anthropogenic land-cover change) to be investigated qualitatively. Based on a cellular automaton representation of the system, extensive calculations are performed. They reveal a number of remarkable and, partially, counter-intuitive phenomena: our model biosphere is able to control almost perfectly the geophysical conditions for its own existence. If the environmental stress exceeds certain thresholds, however, life breaks down on the artificial planet via a first-order phase transition, i.e., in a non-reversible way. There is a close connection between self-stabilizing capacity, biodiversity and geometry of habitat fragmentation. It turns out, in particular, that unrestricted Darwinian competition, which reduces the number of co-existing species, is the best guarantee for survival of the artificial ecosphere as a whole.
  • Item
    On freshwater-dependent bifurcations in box models of the interhemispheric thermohaline circulation
    (Abingdon : Taylor and Francis Ltd., 2002) Titz, S.; Kuhlbrodt, T.; Rahmstorf, S.; Feudel, U.
    Conceptual box models of the interhemispheric thermohaline circulation are studied with respect to bifurcations. Freshwater fluxes are the main control parameters of the system: they determine the stable states and transitions between stable states of the large-scale thermohaline circulation. In this study of interhemispheric box models both numerical and analytical methods are used to investigate transition mechanisms of the thermohaline circulation. The box model examined first is an interhemispheric four-box model. It is shown that the two bifurcations where the present THC can become unstable, the saddle-node and the Hopf bifurcation, depend in a different way on hemispheric freshwater fluxes. A reduction of the model variables leads to the conclusion that two fixed freshwater fluxes between three surface boxes are the model feature responsible for the bifurcation behavior found. The significance of the Hopf bifurcation for the stability of the thermohaline circulation is discussed.
  • Item
    Long-term evolution of the global carbon cycle: Historic minimum of global surface temperature at present
    (Abingdon : Taylor and Francis Ltd., 2002) Franck, S.; Kossacki, K.J.; Von Bloh, W.; Bounama, C.
    We present a minimal model for the global carbon cycle of the Earth containing the reservoirs mantle, ocean floor, continental crust, continental biosphere, and the kerogen, as well as the aggregated reservoir ocean and atmosphere. This model is coupled to a parameterised mantle convection model for describing the thermal and degassing history of the Earth. In this study the evolution of the mean global surface temperature, the biomass, and reservoir sizes over the whole history and future of the Earth under a maturing Sun is investigated. We obtain reasonable values for the present distribution of carbon in the surface reservoirs of the Earth and find that the parameterisation of the hydrothermal flux and the evolution of the ocean pH in the past has a strong influence on the atmospheric carbon reservoir and surface temperature. The different parameterisations give a rather hot as well as a freezing climate on the early Earth (Hadean and early Archaean). Nevertheless, we find a pronounced global minimum of mean surface temperature at the present state at 4.6 Gyr. In the long-term future the external forcing by increasing insolation dominates and the biosphere extincts in about 1.2 Ga. Our study has the implication that the Earth system is just before the point of evolution where this external forcing takes over the main influence from geodynamic effects acting in the past.
  • Item
    Polynyas in a high-resolution dynamic-thermodynamic sea ice model and their parameterization using flux models
    (Abingdon : Taylor and Francis Ltd., 2001) Bjornsson, H.; Willmott, A.J.; Mysak, L.A.; Morales Maqueda, M.A.
    This paper presents an analysis of the solutions for a steady state latent heat polynya generated by an applied wind stress acting over a semi-enclosed channel using: (a) a dynamic-thermodynamic sea ice model, and (b) a steady state flux model. We examine what processes in the sea ice model are responsible for the maintenance of the polynya and how sensitive the results are to the choice of rheological parameters. We find that when the ice is driven onshore by an applied wind stress, a consolidated ice pack forms downwind of a zone of strong convergence in the ice velocities. The build-up of internal stresses within the consolidated ice pack becomes a crucial factor in the formation of this zone and results in a distinct polynya edge. Furthermore, within the ice pack the across-channel ice velocity varies with the across-channel distance. It is demonstrated that provided this velocity is well represented, the steady state polynya flux model solutions are in close agreement with those of the sea ice model. Experiments with the sea ice model also show that the polynya shape and area are insensitive to (a) the sea ice rheology; (b) the imposition of either free- slip or no-slip boundary conditions. These findings are used in the development of a simplified model of the consolidated ice pack dynamics, the output of which is then compared with the sea ice model results. Finally, we discuss the relevance of this study for the modelling of the North Water Polynya in northern Baffin Bay.
  • Item
    Integrierte Abschätzung von Klimaschutzstrategien : methodisch-naturwissenschaftliche Aspekte ; Abschlussbericht, Dezember 2000 ; ICLIPS
    (Potsdam : Potsdam-Institut für Klimaforschung, 2001) Toth, Ferenc; Bruckner, Thomas; Füssel, Hans-Martin
    [no abstract available]