Search Results

Now showing 1 - 10 of 26
  • Item
    Sporadic Ca and Ca+ layers at mid-latitudes: Simultaneous observations and implications for their formation
    (München : European Geopyhsical Union, 2001) Gerding, M.; Alpers, M.; Höffner, J.; von Zahn, U.
    We report on the observations of 188 sporadic layers of either Ca atoms and/or Ca ions that we have observed during 112 nights of lidar soundings of Ca, and 58 nights of Ca+ soundings, at Kühlungsborn, Germany (54° N, 12° E). The Ca+ soundings have been performed simultaneously and in a common volume with the Ca soundings by two separate lidars. Correlations between sporadic neutral and ionized metal layers are demonstrated through four case studies. A systematic study of the variations of occurrence of sporadic Ca and Ca+ layers reveals that neutral and ionized Ca layers are not as closely correlated as expected earlier: (a) The altitude distribution shows the simultaneous occurrence of both sporadic Ca and Ca+ layers to be most likely only in the narrow altitude range between 90 and 95 km. Above that region, in the lower thermosphere, the sporadic ion layers are much more frequent than atom layers. Below 90 km only very few sporadic layers have been observed; (b) The seasonal variation of sporadic Ca layers exhibits a minimum of occurrence in summer, while sporadic Ca+ layers do not show a significant seasonal variation (only the dense Ca+ layers appear to have a maximum in summer). At mid-latitudes sporadic Ca layers are more frequent than sporadic layers of other atmospheric metals like Na or K. For the explanation of our observations new formation mechanisms are discussed.
  • Item
    Observation of an unusual mid-stratospheric aerosol layer in the Arctic: Possible sources and implications for polar vortex dynamics
    (München : European Geopyhsical Union, 2003) Gerding, M.; Baumgarten, G.; Blum, U.; Thayer, J.P.; Fricke, K.-H.; Neuber, R.; Fiedler, J.
    By the beginning of winter 2000/2001, a mysterious stratospheric aerosol layer had been detected by four different Arctic lidar stations. The aerosol layer was observed first on 16 November 2000, at an altitude of about 38 km near Søndre Strømfjord, Greenland (67° N, 51° W) and on 19 November 2000, near Andenes, Norway (69° N, 16° E). Subsequently, in early December 2000, the aerosol layer was observed near Kiruna, Sweden (68° N, 21° E) and Ny-Ålesund, Spitsbergen (79° N, 12° E). No mid-latitude lidar station observed the presence of aerosols in this altitude region. The layer persisted throughout the winter 2000/2001, at least up to 12 February 2001. In November 2000, the backscatter ratio at a wavelength of 532 nm was up to 1.1, with a FWHM of about 2.5 km. By early February 2001, the layer had sedimented from an altitude of 38 km to about 26 km. Measurements at several wavelengths by the ALOMAR and Koldewey lidars indicate the particle size was between 30 and 50 nm. Depolarisation measurements reveal that the particles in the layer are aspherical, hence solid. In the mid-stratosphere, the ambient atmospheric temperature was too high to support in situ formation or existence of cloud particles consisting of ice or an acid-water solution. Furthermore, in the year 2000 there was no volcanic eruption, which could have injected aerosols into the upper stratosphere. Therefore, other origins of the aerosol, such as meteoroid debris, condensed rocket fuel, or aerosols produced under the influence of charged solar particles, will be discussed in the paper. Trajectory calculations illustrate the path of the aerosol cloud within the polar vortex and are used to link the observations at the different lidar sites. From the descent rate of the layer and particle sedimentation rates, the mean down-ward motion of air within the polar vortex was estimated to be about 124 m/d between 35 and 30 km, with higher values at the edge of the vortex.
  • Item
    On the longitudinal structure of the transient day-to-day variation of the semidiurnal tide in the mid-latitude lower thermosphere - I. Winter season
    (München : European Geopyhsical Union, 2001) Merzlyakov, E.G.; Portnyagin, Yu.I.; Jacobi, C.; Mitchell, N.J.; Muller, H.G.; Manson, A.H.; Fachrutdinova, A.N.; Singer, W.; Hoffmann, P.
    The longitudinal structure of the day-to-day variations of semidiurnal tide amplitudes is analysed based on coordinated mesosphere/lower thermosphere wind measurements at several stations during three winter campaigns. Possible excitation sources of these variations are discussed. Special attention is given to a nonlinear interaction between the semidiurnal tide and the day-to-day mean wind variations. Data processing includes the S-transform analysis which takes into account transient behaviour of secondary waves. It is shown that strong tidal modulations appear during a stratospheric warming and may be caused by aperiodic mean wind variations during this event.
  • Item
    Study of the tidal variations in mesospheric temperature at low and mid latitudes from WINDII and potassium lidar observations
    (Göttingen : Copernicus GmbH, 2004) Shepherd, M.; Fricke-Begemann, C.
    Zonal mean daytime temperatures from the Wind Imaging Interferometer (WINDII) on the Upper Atmosphere Research Satellite (UARS) and nightly temperatures from a potassium (K) lidar are employed in the study of the tidal variations in mesospheric temperature at low and mid latitudes in the Northern Hemisphere. The analysis is applied to observations at 89 km height for winter solstice, December to February (DJF), at 55° N, and for May and November at 28° N. The WINDII results are based on observations from 1991 to 1997. The K-lidar observations for DJF at Kühlungsborn (54° N) were from 1996-1999, while those for May and November at Tenerife 28° N were from 1999. To avoid possible effects from year-to-year variability in the temperatures observed, as well as differences due to instrument calibration and observation periods, the mean temperature field is removed from the respective data sets, assuming that only tidal and planetary scale perturbations remain in the temperature residuals. The latter are then binned in 0.5 h periods and the individual data sets are fitted in a least-mean square sense to 12-h and 8-h harmonics, to infer semidiurnal and terdiurnal tidal parameters. Both the K-lidar and WINDII independently observed a strong semidiurnal tide in November, with amplitudes of 13 K and 7.4 K, respectively. Good agreement was also found in the tidal parameters derived from the two data sets for DJF and May. It was recognized that insufficient local time coverage of the two separate data sets could lead to an overestimation of the semidiurnal tidal amplitude. A combined ground-based/satellite data set with full diurnal local time coverage was created which was fitted to 24 h+ 12 h+8 h harmonics and a novel method applied to account for possible differences between the daytime and nighttime means. The results still yielded a strong semidiurnal tide in November at 28° N with an amplitude of 8.8 K which is twice the SD amplitude in May and DJF. The diurnal tidal parameters were practically the same at 28° N and 55° N, in November and DJF, respectively, with an amplitude of 6.5 K and peaking at ∼9h. The diurnal and semidiurnal amplitudes in May were about the same, 4 K, and 4.6 K, while the terdiurnal tide had the same amplitudes and phases in May and November at 28° N. Good agreement is found with other experimental data while models tend to underestimate the amplitudes.
  • Item
    Three years of routine Raman lidar measurements of tropospheric aerosols: Backscattering, extinction, and residual layer height
    (Göttingen : Copernicus GmbH, 2002) Schneider, J.; Eixmann, R.
    We have performed a three-year series of routine lidar measurements at preselected times. The measurements were performed between 1 December 1997, and 30 November 2000, at Kühlungsborn, Germany (54°07′N, 11°46′E). Using a Rayleigh/Mie/Raman lidar system, we measured the aerosol backscatter coefficients at three wavelengths and the extinction coefficient at one wavelength. The present data analysis focuses on after-sunset Raman measurements obtained on cloud-free days. Aerosol backscatter profiles are available for altitudes above 100 m, while the majority of the extinction measurements has been restricted to heights above the residual layer. The residual layer shows an annual cycle with its maximum height in summer (2000 m) and minimum height in winter (850 m). The backscatter coefficients in the residual layer were found to be about 10 times higher than above. The mean aerosol optical depth above the residual layer and below 5 km is 0.3(±1.0) × 10-2 in summer, and 1.5(±1.0) × 10-2 in winter, which almost is negligible compared to values measured in during daytime in the planetary boundary layer. A cluster analysis of the backward trajectories yielded two major directions of air mass origin above the residual layer and 4 major directions inside. A marked difference between the aerosol properties dependent on the air mass origin could be found for air masses originating from the west and travelling at high wind speeds. Comparing the measured spectral dependence of the backscatter coefficients with data from the Global Aerosol Data Set, we found a general agreement, but only a few conclusions with respect to the aerosol type could be drawn due to the high variability of the measured backscatter coefficients.
  • Item
    On the relationship between aspect sensitivity, wave activity, and multiple scattering centers of mesosphere summer echoes: A case study using coherent radar imaging
    (München : European Geopyhsical Union, 2004) Chen, J.-S.; Hoffmann, P.; Zecha, M.; Röttger, J.
    A mesosphere-summer-echo layer, observed by the OSWIN VHF radar (54.1°N, 11.8°E) with vertical and 7° oblique radar beams, was examined using the method of coherent radar imaging (CRI). We disclosed the echo events having multiple scattering centers (MSC) in the radar volume by means of the high angular resolution of the CRI technique and found that the MSC events occurred more frequently in the upper portion of the echo layer. More examinations showed that the characteristics were different between the upper and lower portions of the layer. For example, the differences in echo power between vertical and oblique beams changed mostly from positive to negative along the increase of altitude, and strong turbulent echoes were seen in the upper portion of the layer. These observations indicate that the aspect sensitivity of the echoes became less and less with the increase of altitude. Moreover, the scattering centers of the echoes were close to zenith for the lower portion of the layer but were usually several degrees from the zenith for the upper portion of the layer. Observable wave-like variation in the scattering center was also seen in the upper part of the layer. Based on these features, we drew some conclusions for this case study: (a) the MSC events might result from the slanted layer/anisotropic structure tilted by short-wave activities, (b) the tilt angle of the layer structure could be 6°–10°, causing the echo power received by the 7° oblique beam was larger than or comparable to that received by the vertical beam, and (c) short-wave activities not only tilted the layer structure, but also induced isotropic irregularities.
  • Item
    Absolute density measurements in the middle atmosphere
    (München : European Geopyhsical Union, 2002) Rapp, M.; Gumbel, J.; Lübken, F.-J.
    In the last ten years a total of 25 sounding rockets employing ionization gauges have been launched at high latitudes ( ~ 70° N) to measure total atmospheric density and its small scale fluctuations in an altitude range between 70 and 110 km. While the determination of small scale fluctuations is unambiguous, the total density analysis has been complicated in the past by aerodynamical disturbances leading to densities inside the sensor which are enhanced compared to atmospheric values. Here, we present the results of both Monte Carlo simulations and wind tunnel measurements to quantify this aerodynamical effect. The comparison of the resulting ‘ram-factor’ profiles with empirically determined density ratios of ionization gauge measurements and falling sphere measurements provides excellent agreement. This demonstrates both the need, but also the possibility, to correct aerodynamical influences on measurements from sounding rockets. We have determined a total of 20 density profiles of the mesosphere-lower-thermosphere (MLT) region. Grouping these profiles according to season, a listing of mean density profiles is included in the paper. A comparison with density profiles taken from the reference atmospheres CIRA86 and MSIS90 results in differences of up to 40%. This reflects that current reference atmospheres are a significant potential error source for the determination of mixing ratios of, for example, trace gas constituents in the MLT region.
  • Item
    Modelling the wintertime response to upper tropospheric and lower stratospheric ozone anomalies over the North Atlantic and Europe
    (Göttingen : Copernicus GmbH, 2003) Kirchner, I.; Peters, D.
    During boreal winter months, mean longitude-dependent ozone changes in the upper troposphere and lower stratosphere are mainly used by different ozone transport by planetary waves. The response to radiative perturbation induced by these ozone changes near the tropopause on the circulation is unclear. This response is investigated with the ECHAM4 general circulation model in a sensitivity study. In the simulation two different mean January realizations of the ozone field are implemented in ECHAM4. Both ozone fields are estimated on the basis of the observed mean January planetary wave structure of the 1980s. The first field represents a 14-year average (reference, 1979-1992) and the second one represents the mean ozone field change (anomaly, 1988-92) in boreal extra-tropics during the end of the 1980s. The model runs were carried out pairwise, with identical initial conditions for both ozone fields. Five statistically independent experiments were performed, forced with the observed sea surface temperatures for the period 1988 to 1992. The results support the hypothesis that the zonally asymmetric ozone changes of the 80s triggered a systematic alteration of the circulation over the North Atlantic - European region. It is suggested that this feedback process is important for the understanding of the decadal coupling between troposphere and stratosphere, as well as between subtropics and extra-tropics in winter.
  • Item
    The Lagrangian structure of ozone mini-holes and potential vorticity anomalies in the Northern Hemisphere
    (Göttingen : Copernicus GmbH, 2002) James, P.M.; Peters, D.
    An ozone mini-hole is a synoptic-scale area of strongly reduced column total ozone, which undergoes a growth-decay cycle in association with baroclinic weather systems. The tracks of mini-hole events recorded during the TOMS observation period over the Northern Hemisphere provide a database for building anomaly fields of various meteorological parameters, following each mini-hole center in a Lagrangian sense. The resulting fields provide, for the first time, a complete mean Lagrangian picture of the three-dimensional structure of typical ozone mini-holes in the Northern Hemisphere. Mini-holes are shown to be associated with anomalous warm anticyclonic flow in the upper troposphere and cold cyclonic anomalies in the middle stratosphere. Ascending air columns occur upstream and descent downstream of the mini-hole centers. Band-pass filtering is used to reveal the transient synoptic nature of mini-holes embedded within larger scale circulation anomalies. Significant correlations between ozone and Ertel's potential vorticity on isentropes (IPV) both near the tropopause and in the middle stratosphere are shown and then utilized by reconstructing the Lagrangian analysis to follow local IPV anomalies instead of ozone minima. By using IPV as a proxy for ozone, the geopotential anomaly dipolar structure in the vertical characteristics of mini-holes is shown to result from a superposition of two largely independent dynamical components, stratospheric and tropospheric, typically operating on different time scales. Hence, ozone mini-holes may be viewed primarily as phenomena of coincidence.
  • Item
    A case study of gravity waves in noctilucent clouds
    (München : European Geopyhsical Union, 2004) Dalin, P.; Kirkwood, S.; Moström, A.; Stebel, K.; Hoffmann, P.; Singer, W.
    We present a case study of a noctilucent cloud (NLC) display appearing on 10-11 August 2000 over Northern Sweden. Clear wave structures were visible in the clouds and time-lapse photography was used to derive the parameters characterising the gravity waves which could account for the observed NLC modulation. Using two nearby atmospheric radars, the Esrange MST Radar data and Andoya MF radar, we have identified gravity waves propagating upward from the upper stratosphere to NLC altitudes. The wave parameters derived from the radar measurements support the suggestion that gravity waves are responsible for the observed complex wave dynamics in the NLC.