Search Results

Now showing 1 - 10 of 64
  • Item
    DIVA: An iterative method for building modular integrated models
    (München : European Geopyhsical Union, 2005) Hinkel, J.
    Integrated modelling of global environmental change impacts faces the challenge that knowledge from the domains of Natural and Social Science must be integrated. This is complicated by often incompatible terminology and the fact that the interactions between subsystems are usually not fully understood at the start of the project. While a modular modelling approach is necessary to address these challenges, it is not sufficient. The remaining question is how the modelled system shall be cut down into modules. While no generic answer can be given to this question, communication tools can be provided to support the process of modularisation and integration. Along those lines of thought a method for building modular integrated models was developed within the EU project DINAS-COAST and applied to construct a first model, which assesses the vulnerability of the world’s coasts to climate change and sea-level-rise. The method focuses on the development of a common language and offers domain experts an intuitive interface to code their knowledge in form of modules. However, instead of rigorously defining interfaces between the subsystems at the project’s beginning, an iterative model development process is defined and tools to facilitate communication and collaboration are provided. This flexible approach has the advantage that increased understanding about subsystem interactions, gained during the project’s lifetime, can immediately be reflected in the model.
  • Item
    Sporadic Ca and Ca+ layers at mid-latitudes: Simultaneous observations and implications for their formation
    (München : European Geopyhsical Union, 2001) Gerding, M.; Alpers, M.; Höffner, J.; von Zahn, U.
    We report on the observations of 188 sporadic layers of either Ca atoms and/or Ca ions that we have observed during 112 nights of lidar soundings of Ca, and 58 nights of Ca+ soundings, at Kühlungsborn, Germany (54° N, 12° E). The Ca+ soundings have been performed simultaneously and in a common volume with the Ca soundings by two separate lidars. Correlations between sporadic neutral and ionized metal layers are demonstrated through four case studies. A systematic study of the variations of occurrence of sporadic Ca and Ca+ layers reveals that neutral and ionized Ca layers are not as closely correlated as expected earlier: (a) The altitude distribution shows the simultaneous occurrence of both sporadic Ca and Ca+ layers to be most likely only in the narrow altitude range between 90 and 95 km. Above that region, in the lower thermosphere, the sporadic ion layers are much more frequent than atom layers. Below 90 km only very few sporadic layers have been observed; (b) The seasonal variation of sporadic Ca layers exhibits a minimum of occurrence in summer, while sporadic Ca+ layers do not show a significant seasonal variation (only the dense Ca+ layers appear to have a maximum in summer). At mid-latitudes sporadic Ca layers are more frequent than sporadic layers of other atmospheric metals like Na or K. For the explanation of our observations new formation mechanisms are discussed.
  • Item
    The atmospheric background situation in northern Scandinavia during January/February 2003 in the context of the MaCWAVE campaign
    (München : European Geopyhsical Union, 2006) Blum, U.; Baumgarten, G.; Schöch, A.; Kirkwood, S.; Naujokat, B.; Fricke, K.H.
    The atmosphere background wind field controls the propagation of gravity waves from the troposphere through the stratosphere into the mesosphere. During January 2003 the MaCWAVE campaign took place at Esrange, with the purpose of observing vertically ascending waves induced by orography. Temperature data from the U. Bonn lidar at Esrange (68° N/21° E) and the ALOMAR RMR lidar (69° N/16° E), wind data from Esrange MST radar ESRAD, as well as wind data from the ECMWF T106 model, are used to analyse the atmospheric background situation and its effect on mountain wave propagation during January/February 2003. Critical levels lead to dissipation of vertically ascending waves, thus mountain waves are not observable above those levels. In the first half of January a minor as well as a major stratospheric warming dominated the meteorological background situation. These warmings led to a wind reversal, thus to critical level filtering and consequently prevented gravity waves from propagating to high altitudes. While the troposphere was not transparent for stationary gravity waves most of the time, there was a period of eight days following the major warming with a transparent stratosphere, with conditions allowing gravity waves generated in the lower troposphere to penetrate the stratosphere up to the stratopause and sometimes even into the lower mesosphere. In the middle of February a minor stratospheric warming occurred, which again led to critical levels such that gravity waves were not able to ascend above the middle stratosphere. Due to the unfavourable troposphere and lower stratosphere conditions for gravity wave excitation and propagation, the source of the observed waves in the middle atmosphere is probably different from orography.
  • Item
    Observation of an unusual mid-stratospheric aerosol layer in the Arctic: Possible sources and implications for polar vortex dynamics
    (München : European Geopyhsical Union, 2003) Gerding, M.; Baumgarten, G.; Blum, U.; Thayer, J.P.; Fricke, K.-H.; Neuber, R.; Fiedler, J.
    By the beginning of winter 2000/2001, a mysterious stratospheric aerosol layer had been detected by four different Arctic lidar stations. The aerosol layer was observed first on 16 November 2000, at an altitude of about 38 km near Søndre Strømfjord, Greenland (67° N, 51° W) and on 19 November 2000, near Andenes, Norway (69° N, 16° E). Subsequently, in early December 2000, the aerosol layer was observed near Kiruna, Sweden (68° N, 21° E) and Ny-Ålesund, Spitsbergen (79° N, 12° E). No mid-latitude lidar station observed the presence of aerosols in this altitude region. The layer persisted throughout the winter 2000/2001, at least up to 12 February 2001. In November 2000, the backscatter ratio at a wavelength of 532 nm was up to 1.1, with a FWHM of about 2.5 km. By early February 2001, the layer had sedimented from an altitude of 38 km to about 26 km. Measurements at several wavelengths by the ALOMAR and Koldewey lidars indicate the particle size was between 30 and 50 nm. Depolarisation measurements reveal that the particles in the layer are aspherical, hence solid. In the mid-stratosphere, the ambient atmospheric temperature was too high to support in situ formation or existence of cloud particles consisting of ice or an acid-water solution. Furthermore, in the year 2000 there was no volcanic eruption, which could have injected aerosols into the upper stratosphere. Therefore, other origins of the aerosol, such as meteoroid debris, condensed rocket fuel, or aerosols produced under the influence of charged solar particles, will be discussed in the paper. Trajectory calculations illustrate the path of the aerosol cloud within the polar vortex and are used to link the observations at the different lidar sites. From the descent rate of the layer and particle sedimentation rates, the mean down-ward motion of air within the polar vortex was estimated to be about 124 m/d between 35 and 30 km, with higher values at the edge of the vortex.
  • Item
    On the longitudinal structure of the transient day-to-day variation of the semidiurnal tide in the mid-latitude lower thermosphere - I. Winter season
    (München : European Geopyhsical Union, 2001) Merzlyakov, E.G.; Portnyagin, Yu.I.; Jacobi, C.; Mitchell, N.J.; Muller, H.G.; Manson, A.H.; Fachrutdinova, A.N.; Singer, W.; Hoffmann, P.
    The longitudinal structure of the day-to-day variations of semidiurnal tide amplitudes is analysed based on coordinated mesosphere/lower thermosphere wind measurements at several stations during three winter campaigns. Possible excitation sources of these variations are discussed. Special attention is given to a nonlinear interaction between the semidiurnal tide and the day-to-day mean wind variations. Data processing includes the S-transform analysis which takes into account transient behaviour of secondary waves. It is shown that strong tidal modulations appear during a stratospheric warming and may be caused by aperiodic mean wind variations during this event.
  • Item
    Inertia gravity waves in the upper troposphere during the MaCWAVE winter campaign - Part II: Radar investigations and modelling studies
    (München : European Geopyhsical Union, 2006) Serafimovich, A.; Zülicke, Ch.; Hoffmann, P.; Peters, D.; Dalin, P.; Singer, W.
    We present an experimental and modelling study of a strong gravity wave event in the upper troposphere/lower stratosphere near the Scandinavian mountain ridge. Continuous VHF radar measurements during the MaCWAVE rocket and ground-based measurement campaign were performed at the Norwegian Andoya Rocket Range (ARR) near Andenes (69.3° N, 16° E) in January 2003. Detailed gravity wave investigations based on PSU/NCAR Fifth-Generation Mesoscale Model (MM5) data have been used for comparison with experimentally obtained results. The model data show the presence of a mountain wave and of an inertia gravity wave generated by a jet streak near the tropopause region. Temporal and spatial dependencies of jet induced inertia gravity waves with dominant observed periods of about 13 h and vertical wavelengths of ~4.5–5 km are investigated with wavelet transform applied on radar measurements and model data. The jet induced wave packet is observed to move upstream and downward in the upper troposphere. The model data agree with the experimentally obtained results fairly well. Possible reasons for the observed differences, e.g. in the time of maximum of the wave activity, are discussed. Finally, the vertical fluxes of horizontal momentum are estimated with different methods and provide similar amplitudes. We found indications that the derived positive vertical flux of the horizontal momentum corresponds to the obtained parameters of the jet-induced inertia gravity wave, but only at the periods and heights of the strongest wave activity.
  • Item
    Agents, Bayes, and Climatic Risks - a modular modelling approach
    (München : European Geopyhsical Union, 2005) Haas, A.; Jaeger, C.
    When insurance firms, energy companies, governments, NGOs, and other agents strive to manage climatic risks, it is by no way clear what the aggregate outcome should and will be. As a framework for investigating this subject, we present the LAGOM model family. It is based on modules depicting learning social agents. For managing climate risks, our agents use second order probabilities and update them by means of a Bayesian mechanism while differing in priors and risk aversion. The interactions between these modules and the aggregate outcomes of their actions are implemented using further modules. The software system is implemented as a series of parallel processes using the CIAMn approach. It is possible to couple modules irrespective of the language they are written in, the operating system under which they are run, and the physical location of the machine
  • Item
    Integrated analysis of water quality in a mesoscale lowland basin
    (München : European Geopyhsical Union, 2005) Habeck, A.; Krysanova, V.; Hattermann, F.
    This article describes a modelling study on nitrogen transport from diffuse sources in the Nuthe catchment, representing a typical lowland region in the north-eastern Germany. Building on a hydrological validation performed in advance using the ecohydrological model SWIM, the nitrogen flows were simulated over a 20-year period (1981-2000). The relatively good quality of the input data, particularly for the years from 1993 to 2000, enabled the nitrogen flows to be reproduced sufficiently well, although modelling nutrient flows is always associated with a great deal of uncertainty. Subsequently, scenario calculations were carried out in order to investigate how nitrogen transport from the catchment could be further reduced. The selected scenario results with the greatest reduction of nitrogen washoff will briefly be presented in the paper.
  • Item
    MALTE - Model to predict new aerosol formation in the lower troposphere
    (München : European Geopyhsical Union, 2006) Boy, M.; Hellmuth, O.; Korhonen, H.; Nilsson, E.D.; ReVelle, D.; Turnipseed, A.; Arnold, F.; Kulmala, M.
    The manuscript presents a detailed description of the meteorological and chemical code of Malte – a model to predict new aerosol formation in the lower troposphere. The aerosol dynamics are achieved by the new developed UHMA (University of Helsinki Multicomponent Aerosol Model) code with kinetic limited nucleation as responsible mechanism to form new clusters. First results indicate that the model is able to predict the on- and offset of new particle formation as well as the total aerosol number concentrations that were in good agreement with the observations. Further, comparison of predicted and measured H2SO4 concentrations showed a satisfactory agreement. The simulation results indicated that at a certain transitional particle diameter (2–7 nm), organic molecules can begin to contribute significantly to the growth rate compared to sulphuric acid. At even larger particle sizes, organic molecules can dominate the growth rate on days with significant monoterpene concentrations. The intraday vertical evolution of newly formed clusters and particles in two different size ranges resulted in two maxima at the ground. These particles grow around noon to the detectable size range and agree well with measured vertical profiles.
  • Item
    Columnar modelling of nucleation burst evolution in the convective boundary layer - First results from a feasibility study, Part III: Preliminary results on physicochemical model performance using two "clean air mass" reference scenarios
    (München : European Geopyhsical Union, 2006) Hellmuth, O.
    In Paper I of four papers, a revised columnar high-order model to investigate gas-aerosol-turbulence interactions in the convective boundary layer (CBL) was proposed. In Paper II, the model capability to predict first-, second- and third-order moments of meteorological variables in the CBL was demonstrated using available observational data. In the present Paper III, the high-order modelling concept is extended to sulphur and ammonia chemistry as well as to aerosol dynamics. Based on the previous CBL simulation, a feasibility study is performed using two "clean air mass" scenarios with an emission source at the ground but low aerosol background concentration. Such scenarios synoptically correspond to the advection of fresh post-frontal air in an anthropogenically influenced region. The aim is to evaluate the time-height evolution of ultrafine condensation nuclei (UCNs) and to elucidate the interactions between meteorological and physicochemical variables in a CBL column. The scenarios differ in the treatment of new particle formation (NPF), whereas homogeneous nucleation according to the classical nucleation theory (CNT) is considered. The first scenario considers nucleation of a binary system consisting of water vapour and sulphuric acid (H2SO4) vapour, the second one nucleation of a ternary system additionally involving ammonia (NH3). Here, the two synthetic scenarios are discussed in detail, whereas special attention is payed to the role of turbulence in the formation of the typical UCN burst behaviour, that can often be observed in the surface layer. The intercomparison of the two scenarios reveals large differences in the evolution of the UCN number concentration in the surface layer as well as in the time-height cross-sections of first-order moments and double correlation terms. Although in both cases the occurrence of NPF bursts could be simulated, the burst characteristics and genesis of the bursts are completely different. It is demonstrated, that observations from the surface layer alone are not conclusive to elucidate the origin of newly formed particles. This is also true with respect to the interpretation of box modelling studies. The binary and ternary NPF bursts observed in the surface layer differ with respect to burst amplitude and phase. New particles simulated in the binary scenario are formed in the forenoon in the upper part of the growing CBL, followed by turbulence-induced top-down transport. Hence, with respect to the burst observation site in the surface layer, new particles are formed ex situ. In opposite to this, the ternary case reveals a much more complex pattern. Here, NPF is initiated in the early morning hours in the surface layer, when temperature (T) is low and relative humidity (RH), sulphur dioxide (SO2) and NH3 concentrations are high, hence new particles are formed in situ. Shortly after that, ex situ NPF in the free troposphere sets in, followed by entrainment and top-down diffusion of newly formed particles into the surface layer. Altogether, these processes mainly contribute to the formation of a strong burst in the morning hours in the ternary scenario. While the time-height cross-section of the binary nucleation rate resembles a "blob"-like evolution pattern, the ternary one resembles a "sucking tube"-like pattern. The time-height cross-sections of the flux pattern and double correlations could be plausibly interpreted in terms of CBL turbulence and entrainment/detrainment processes both in the binary and in the ternary case. Although the present approach is a pure conceptual one, it shows the feasibility to simulate gas-aerosol-turbulence interactions in the CBL. Prior to a dedicated verification/validation study, further attempts are necessary to consider a more advanced description of the formation and activation of thermodynamically stable clusters according to modern concepts proposed by Kulmala et al. (2000), Kulmala (2003) and Kulmala et al. (2004a).