Search Results

Now showing 1 - 3 of 3
  • Item
    Longitude-dependent decadal ozone changes and ozone trends in boreal winter months during 1960-2000
    (Göttingen : Copernicus, 2008) Peters, D.H.W.; Gabriel, A.; Entzian, G.
    This study examines the longitude-dependent decadal changes and trends of ozone for the boreal winter months during the period of 1960–2000. These changes are caused primarily by changes in the planetary wave structure in the upper troposphere and lower stratosphere. The decadal changes and trends over 4 decades of geopotential perturbations, defined as a deviation from the zonal mean, are estimated by linear regression with time. The decadal changes in longitude-dependent ozone were calculated with a simple transport model of ozone based on the known planetary wave structure changes and prescribed zonal mean ozone gradients. For December of the 1960s and 1980s a statistically significant Rossby wave track appeared over the North Atlantic and Europe with an anticyclonic disturbance over the Eastern North Atlantic and Western Europe, flanked by cyclonic disturbances. In the 1970s and 1990s statistically significant cyclonic disturbances appeared over the Eastern North Atlantic and Europe, surrounded by anticyclonic anomalies over Northern Africa, Central Asia and Greenland. Similar patterns have been found for January. The Rossby wave track over the North Atlantic and Europe is stronger in the 1980s than in the 1960s. For February, the variability of the regression patterns is higher. For January we found a strong alteration in the modelled decadal changes in total ozone over Central and Northern Europe, showing a decrease of about 15 DU in the 1960s and 1980s and an increase of about 10 DU in the 1970s and 1990s. Over Central Europe the positive geopotential height trend (increase of 2.3 m/yr) over 40 years is of the same order (about 100 m) as the increase in the 1980s alone. This is important to recognize because it implies a total ozone decrease over Europe of the order of 14 DU for the 1960–2000 period, for January, if we use the standard change regression relation that about a 10-m geopotential height increase at 300 hPa is related to about a 1.4-DU total ozone decrease.
  • Item
    Rocket measurements of positive ions during polar mesosphere winter echo conditions
    (München : European Geopyhsical Union, 2006) Brattli, A.; Blix, T.A.; Lie-Svendsen, Ø.; Hoppe, U.-P.; Lübken, F.-J.; Rapp, M.; Singer, W.; Latteck, R.; Friedrich, M.
    On 18 January 2005, two small, instrumented rockets were launched from Andøya Rocket Range (69.3° N, 16° E) during conditions with Polar Mesosphere Winter Echoes (PMWE). Each of the rockets was equipped with a Positive Ion Probe (PIP) and a Faraday rotation/differential absorption experiment, and was launched as part of a salvo of meteorological rockets measuring temperature and wind using falling spheres and chaff. Layers of PMWE were detected between 55 and 77 km by the 53.5 MHz ALWIN radar. The rockets were launched during a solar proton event, and measured extremely high ion densities, of order 1010 m−3, in the region where PMWE were observed. The density measurements were analyzed with the wavelet transform technique. At large length scales, ~103 m, the power spectral density can be fitted with a k−3 wave number dependence, consistent with saturated gravity waves. Outside the PMWE layers the k−3 spectrum extends down to approximately 102 m where the fluctuations are quickly damped and disappear into the instrumental noise. Inside the PMWE layers the spectrum at smaller length scales is well fitted with a k−5/3 dependence over two decades of scales. The PMWE are therefore clearly indicative of turbulence, and the data are consistent with the turbulent dissipation of breaking gravity waves. We estimate a lower limit for the turbulent energy dissipation rate of about 10−2 W/kg in the upper (72 km) layer.
  • Item
    Very low ozone episodes due to polar vortex displacement
    (Milton Park : Taylor & Francis, 2000) James, P.M.; Peters, D.; Waugh, D.W.
    The large-scale ozone distribution over the northern hemisphere undergoes strong fluctuationseach winter on timescales of up to a few weeks. This is closely linked to changes in the stratosphericpolar vortex, whose shape, intensity and location vary with time. Elliptical diagnosticparameters provide an empirical description of the daily character of the polar vortex. Theseparameters are used as an objective measure to define two characteristic wintertime vortexdisplacements, towards northern Europe and Canada, respectively. The large-scale structuresin both the stratosphere and troposphere and the 3D ozone structures are determined for bothvortex displacement scenarios. A linear ozone transport model shows that the contribution ofhorizontal ozone advection dominates locally in the middle stratosphere. Nevertheless, thelargest contribution is due to vertical advection around the ozone layer maximum. The findingsare in agreement with an EOF analysis which reveals significant general modes of ozone variabilitylinked to polar vortex displacement and to phase-shifted large-scale tropospheric waves.When baroclinic waves travel through the regions of vortex-related ozone reduction, the combinedeffect is to produce transient synoptic-scale areas of exceptionally low ozone; namelydynamically induced strong ozone mini-holes.