Search Results

Now showing 1 - 10 of 24
  • Item
    Starspots
    (Berlin : Springer Verlag, 2009) Strassmeier, K.G.
    Starspots are created by local magnetic fields on the surfaces of stars, just as sunspots. Their fields are strong enough to suppress the overturning convective motion and thus block or redirect the flow of energy from the stellar interior outwards to the surface and consequently appear as locally cool and therefore dark regions against an otherwise bright photosphere (Biermann in Astronomische Nachrichten 264:361, 1938; Z Astrophysik 25:135, 1948). As such, starspots are observable tracers of the yet unknown internal dynamo activity and allow a glimpse into the complex internal stellar magnetic field structure. Starspots also enable the precise measurement of stellar rotation which is among the key ingredients for the expected internal magnetic topology. But whether starspots are just blown-up sunspot analogs, we do not know yet. This article is an attempt to review our current knowledge of starspots. A comparison of a white-light image of the Sun (G2V, 5 Gyr) with a Doppler image of a young solar-like star (EK Draconis; G1.5V, age 100 Myr, rotation 10 × Ω Sun) and with a mean-field dynamo simulation suggests that starspots can be of significantly different appearance and cannot be explained with a scaling of the solar model, even for a star of same mass and effective temperature. Starspots, their surface location and migration pattern, and their link with the stellar dynamo and its internal energy transport, may have far reaching impact also for our understanding of low-mass stellar evolution and formation. Emphasis is given in this review to their importance as activity tracers in particular in the light of more and more precise exoplanet detections around solar-like, and therefore likely spotted, host stars. © 2009 Springer-Verlag.
  • Item
    Shell models for Hall effect induced magnetic turbulence
    (College Park, MD : Institute of Physics Publishing, 2007) Frick, P.; Stepanov, R.; Rheinhardt, M.
    The Hall effect occurs in strongly magnetized conductive media and results in non-dissipative currents perpendicular to the electric field. We discuss its influence on the magnetic field dynamics ignoring fluid motion and ambipolar diffusion. The magnetic field evolution can then be basically similar to that of the velocity field in hydrodynamic turbulence resulting in a magnetic turbulence. Shell models for the induction equation with Hall effect are constructed on the basis of the conservation of magnetic energy and helicity in the dissipation-free limit. Numerical simulations of these models indicate that a magnetic energy cascade does occur, but the time behaviour and spatial spectrum of the magnetic field are very different from those of the velocity in shell models of hydrodynamic turbulence. ©IOP Publishing Ltd and Deutsche Physikalische Gesellschaft.
  • Item
    Experiments on the magnetorotational instability in helical magnetic fields
    (College Park, MD : Institute of Physics Publishing, 2007) Stefani, F.; Gundrum, T.; Gerbeth, G.; Rüdiger, G.; Szklarski, J.; Hollerbach, R.
    The magnetorotational instability (MRI) plays a key role in the formation of stars and black holes, by enabling outward angular momentum transport in accretion discs. The use of combined axial and azimuthal magnetic fields allows the investigation of this effect in liquid metal flows at moderate Reynolds and Hartmann numbers. A variety of experimental results is presented showing evidence for the occurrence of the MRI in a Taylor-Couette flow using the liquid metal alloy GaInSn. © IOP Publishing Ltd and Deutsche Physikalische Gesellschaft.
  • Item
    Structure and stability of the magnetic solar tachocline
    (College Park, MD : Institute of Physics Publishing, 2007) Rüdiger, G.; Kitchatinov, L.L.
    Rather weak fossil magnetic fields in the radiative core can produce the solar tachocline if the field is almost horizontal in the tachocline region, i.e. if the field is confined within the core. This particular field geometry is shown to result from a shallow (≲1 Mm) penetration of the meridional flow existing in the convection zone into the radiative core. Two conditions are thus crucial for a magnetic tachocline theory: (i) the presence of meridional flow of a few metres per second at the base of the convection zone, and (ii) a magnetic diffusivity inside the tachocline smaller than 108 cm 2 s-1. Numerical solutions for the confined poloidal fields and the resulting tachocline structures are presented. We find that the tachocline thickness runs as Bp-1/2 with the poloidal field amplitude falling below 5% of the solar radius for Bp > 5 mG. The resulting toroidal field amplitude inside the tachocline of about 100 G does not depend on the Bp. The hydromagnetic stability of the tachocline is only briefly discussed. For the hydrodynamic stability of latitudinal differential rotation we found that the critical 29% of the 2D theory of Watson (1981 Geophys. Astrophys. Fluid Dyn. 16 285) are reduced to only 21% in 3D for marginal modes of about 6 Mm radial scale. © IOP Publishing Ltd and Deutsche Physikalische Gesellschaft.
  • Item
    Kinetic slow mode-type solitons
    (Göttingen : Copernicus GmbH, 2005) Baumgärtel, K.; Sauer, K.; Dubinin, E.
    One-dimensional hybrid code simulations are presented, carried out in order both to study solitary waves of the slow mode branch in an isotropic, collisionless, medium-β plasma (βi=0.25) and to test the fluid based soliton interpretation of Cluster observed strong magnetic depressions (Stasiewicz et al., 200; Stasiewicz, 2004) against kinetic theory. In the simulations, a variety of strongly oblique, large amplitude, solitons are seen, including solitons with Alfvenic polarization, similar to those predicted by the Hall-MHD theory, and robust, almost non-propagating, solitary structures of slow magnetosonic type with strong magnetic field depressions and perpendicular ion heating, which have no counterpart in fluid theory. The results support the soliton-based interpretation of the Cluster observations, but reveal substantial deficiencies of Hall-MHD theory in describing slow mode-type solitons in a plasma of moderate beta.
  • Item
    On the two-day oscillations and the day-to-day variability in global 3-D-modeling of the chemical system of the upper mesosphere/mesopause region
    (Göttingen : Copernicus GmbH, 2005) Sonnemann, G.R.; Grygalashvyly, M.
    The integration of the photochemical system of the upper mesosphere/ mesopause region brought evidence that the system is able to respond in a nonlinear manner under certain conditions. Under the action of the diurnallyperiodic insolation, the system creates subharmonic oscillations or chaos if disregarding strong diffusion, and under special conditions it possesses multiple solutions. The models used in the past were simplified and idealized in view of the number of dimensions and the consideration of the full dynamics. On the basis of our global 3-D-model of the dynamics and chemistry of the middle atmosphere (COMMAIAP), we also found a nonlinear response in the photochemistry under realistic conditions. The model under consideration is not yet self-consistent, but the chemical model uses the dynamical fields calculated by the dynamic model. From our calculations we got period-2 oscillations of the photochemical system within confined latitudinal regions around the solstices but not during the equinoxes. The consequence of the period-2 oscillation of the chemical active minor constituents is that a marked two-day variation of the chemical heating rates is an important thermal pumping mechanism. We discuss these findings particularly in terms of the influence of realistic dynamics on the creation of nonlinear effects.
  • Item
    Magnetic holes in the solar wind between 0.3 AU and 17 AU
    (Göttingen : Copernicus GmbH, 2000) Sperveslage, K.; Neubauer, F.M.; Baumgärtel, K.; Ness, N.F.
    Magnetic holes (MHs) are depressions of the magnetic field magnitude. Turner et al. (1977) identified the first MHs in the solar wind and determined an occurrence rate of 1.5 MHs/d. Winterhalter et al. (1994) developed an automatic identification criterion to search for MHs in Ulysses data in the solar wind between 1 AU and 5.4 AU. We adopt their criterion to expand the search to the heliocentric distances down to 0.3 AU using data from Helios 1 and 2 and up to 17 AU using data from Voyager 2. We relate our observations to two theoretical approaches which describe the so-called linear MHs in which the magnetic vector varies in magnitude rather than direction. Therefore we focus on such linear MHs with a directional change less than 10°. With our observations of about 850 MHs we present the following results: Approximately 30% of all the identified MHs are linear. The maximum angle between the initial magnetic field vector and any vector inside the MH is 20°in average and shows a weak relation to the depth of the MHs. The angle between the initial magnetic field and the minimum variance direction of those structures is large and very probably close to 90°. The MHs are placed in a high β environment even though the average solar wind shows a smaller β. The widths decrease from about 50 proton inertial length in a region between 0.3 AU and 0.4 AU heliocentric distance to about 15 proton inertial length at distances larger than 10 AU. This quantity is correlated with the β of the MH environments with respect to the heliocentric distance. There is a clear preference for the occurrence of depressions instead of compressions. We discuss these results with regard to the main theories of MHs, the mirror instability and the alternative soliton approach. Although our observational results are more consistent with the soliton theory we favor a combination of both. MHs might be the remnants of initial mirror mode structures which can be described as solitons during the main part of their lifetime.
  • Item
    Metagalaktische Röntgenhintergrund : Schlussbericht zum Vorhaben
    (Potsdam : Leibniz-Institut für Astrophysik, 2002) AIP
    [no abstract available]