Search Results

Now showing 1 - 6 of 6
  • Item
    Turbulent energy dissipation rates observed by Doppler MST Radar and by rocket-borne instruments during the MIDAS/MaCWAVE campaign 2002
    (Göttingen : Copernicus GmbH, 2005) Engler, N.; Latteck, R.; Strelnikov, B.; Singer, W.; Rapp, M.
    During the MIDAS/MaCWAVE campaign in summer 2002 we have observed turbulence using Doppler beam steering measurements obtained from the ALWIN VHF radar at Andøya/Northern Norway. This radar was operated in the Doppler beam steering mode for turbulence investigations during the campaign, as well as in spaced antenna mode, for continuously measuring the background wind field. The real-time data analysis of the Doppler radar backscattering provided the launch conditions for the sounding rockets. The spectral width data observed during the occurrence of PMSE were corrected for beam and shear broadening caused by the background wind field to obtain the turbulent part of the spectral width. The turbulent energy dissipation rates determined from the turbulent spectral width vary between 5 and 100 m Wkg-1 in the altitude range of 80-92 km and increase with altitude. These estimations agree well with the in-situ measurements using the CONE sensor which was launched on 3 sounding rockets during the campaign.
  • Item
    Mesopause dynamics from the Scandinavian triangle of radars within the PSMOS-DATAR project
    (München : European Geopyhsical Union, 2004) Manson, A.H.; Meek, C.E.; Hall, C.M.; Nozawa, S.; Mitchell, N.J.; Pancheva, D.; Singer, W.; Hoffmann, P.
    The "Scandinavian Triangle" is a unique trio of radars within the DATAR Project (Dynamics and Temperatures from the Arctic MLT (60–97km) region): Andenes MF radar (69°N, 16°E); Tromsø MF radar (70°N, 19°E) and Esrange "Meteor" radar (68°N, 21°E). The radar-spacings range from 125-270km, making it unique for studies of wind variability associated with small-scale waves, comparisons of large-scale waves measured over small spacings, and for comparisons of winds from different radar systems. As such it complements results from arrays having spacings of 25km and 500km that have been located near Saskatoon. Correlation analysis is used to demonstrate a speed bias (MF smaller than the Meteor) between the radar types, which varies with season and altitude. Annual climatologies for the year 2000 of mean winds, solar tides, planetary and gravity waves are presented, and show indications of significant spatial variability across the Triangle and of differences in wave characteristics from middle latitudes.
  • Item
    Monthly mean climatology of the prevailing winds and tides in the Artic mesosphere/lower thermosphere
    (München : European Geopyhsical Union, 2004) Portnyagin, Y.I.; Solovjova, T.V.; Makarov, N.A.; Merzlyakov, E.G.; Manson, A.H.; Meek, C.E.; Hocking, W.; Mitchell, N.; Pancheva, D.; Hoffmann, P.; Singer, W.; Murayama, Y.; Igarashi, K.; Forbes, J.M.; Palo, S.; Hall, C.; Nozawa, S.
    The Arctic MLT wind regime parameters measured at the ground-based network of MF and meteor radar stations (Andenes 69° N, Tromsø 70° N, Esrange 68° N, Dixon 73.5° N, Poker Flat 65° N and Resolute Bay 75° N) are discussed and compared with those observed in the mid-latitudes. The network of the ground-based MF and meteor radars for measuring winds in the Arctic upper mesosphere and lower thermosphere provides an excellent opportunity for study of the main global dynamical structures in this height region and their dependence from longitude. Preliminary estimates of the differences between the measured winds and tides from the different radar types, situated 125-273km apart (Tromsø, Andenes and Esrange), are provided. Despite some differences arising from using different types of radars it is possible to study the dynamical wind structures. It is revealed that most of the observed dynamical structures are persistent from year to year, thus permitting the analysis of the Arctic MLT dynamics in a climatological sense. The seasonal behaviour of the zonally averaged wind parameters is, to some extent, similar to that observed at the moderate latitudes. However, the strength of the winds (except the prevailing meridional wind and the diurnal tide amplitudes) in the Arctic MLT region is, in general, less than that detected at the moderate latitudes, decreasing toward the pole. There are also some features in the vertical structure and seasonal variations of the Arctic MLT winds which are different from the expectations of the well-known empirical wind models CIRA-86 and HWM-93. The tidal phases show a very definite longitudinal dependence that permits the determination of the corresponding zonal wave numbers. It is shown that the migrating tides play an important role in the dynamics of the Arctic MLT region. However, there are clear indications with the presence in some months of non-migrating tidal modes of significant appreciable amplitude.
  • Item
    On the relationship between aspect sensitivity, wave activity, and multiple scattering centers of mesosphere summer echoes: A case study using coherent radar imaging
    (München : European Geopyhsical Union, 2004) Chen, J.-S.; Hoffmann, P.; Zecha, M.; Röttger, J.
    A mesosphere-summer-echo layer, observed by the OSWIN VHF radar (54.1°N, 11.8°E) with vertical and 7° oblique radar beams, was examined using the method of coherent radar imaging (CRI). We disclosed the echo events having multiple scattering centers (MSC) in the radar volume by means of the high angular resolution of the CRI technique and found that the MSC events occurred more frequently in the upper portion of the echo layer. More examinations showed that the characteristics were different between the upper and lower portions of the layer. For example, the differences in echo power between vertical and oblique beams changed mostly from positive to negative along the increase of altitude, and strong turbulent echoes were seen in the upper portion of the layer. These observations indicate that the aspect sensitivity of the echoes became less and less with the increase of altitude. Moreover, the scattering centers of the echoes were close to zenith for the lower portion of the layer but were usually several degrees from the zenith for the upper portion of the layer. Observable wave-like variation in the scattering center was also seen in the upper part of the layer. Based on these features, we drew some conclusions for this case study: (a) the MSC events might result from the slanted layer/anisotropic structure tilted by short-wave activities, (b) the tilt angle of the layer structure could be 6°–10°, causing the echo power received by the 7° oblique beam was larger than or comparable to that received by the vertical beam, and (c) short-wave activities not only tilted the layer structure, but also induced isotropic irregularities.
  • Item
    The noctilucent cloud (NLC) display during the ECOMA/MASS sounding rocket flights on 3 August 2007: Morphology on global to local scales
    (München : European Geopyhsical Union, 2009) Baumgarten, G.; Fiedler, J.; Fricke, K.H.; Gerding, M.; Hervig, M.; Hoffmann, P.; Müller, N.; Pautet, P.-D.; Rapp, M.; Robert, C.; Rusch, D.; von Savigny, C.; Singer, W.
    During the ECOMA/MASS rocket campaign large scale NLC/PMC was observed by satellite, lidar and camera from polar to mid latitudes. We examine the observations from different instruments to investigate the morphology of the cloud. Satellite observations show a planetary wave 2 structure. Lidar observations from Kühlungsborn (54° N), Esrange (68° N) and ALOMAR (69° N) show a highly dynamic NLC layer. Under favorable solar illumination the cloud is also observable by ground-based cameras. The cloud was detected by cameras from Trondheim (63° N), Juliusruh (55° N) and Kühlungsborn. We investigate planetary scale morphology and local scale gravity wave structures, important for the interpretation of the small scale rocket soundings. We compare in detail the lidar observations with the NLC structure observed by the camera in Trondheim. The ALOMAR RMR-lidar observed only a faint NLC during the ECOMA launch window, while the camera in Trondheim showed a strong NLC display in the direction of ALOMAR. Using the high resolution camera observations (t~30 s, Δx<5 km) and the wind information from the meteor radar at ALOMAR we investigate the formation and destruction of NLC structures. We observe that the NLC brightness is reduced by a factor of 20–40 within 100 s which can be caused by a temperature about 15 K above the frostpoint temperature. A horizontal temperature gradient of more than 3 K/km is estimated.
  • Item
    Absolute density measurements in the middle atmosphere
    (München : European Geopyhsical Union, 2002) Rapp, M.; Gumbel, J.; Lübken, F.-J.
    In the last ten years a total of 25 sounding rockets employing ionization gauges have been launched at high latitudes ( ~ 70° N) to measure total atmospheric density and its small scale fluctuations in an altitude range between 70 and 110 km. While the determination of small scale fluctuations is unambiguous, the total density analysis has been complicated in the past by aerodynamical disturbances leading to densities inside the sensor which are enhanced compared to atmospheric values. Here, we present the results of both Monte Carlo simulations and wind tunnel measurements to quantify this aerodynamical effect. The comparison of the resulting ‘ram-factor’ profiles with empirically determined density ratios of ionization gauge measurements and falling sphere measurements provides excellent agreement. This demonstrates both the need, but also the possibility, to correct aerodynamical influences on measurements from sounding rockets. We have determined a total of 20 density profiles of the mesosphere-lower-thermosphere (MLT) region. Grouping these profiles according to season, a listing of mean density profiles is included in the paper. A comparison with density profiles taken from the reference atmospheres CIRA86 and MSIS90 results in differences of up to 40%. This reflects that current reference atmospheres are a significant potential error source for the determination of mixing ratios of, for example, trace gas constituents in the MLT region.