Search Results

Now showing 1 - 4 of 4
  • Item
    Large mesospheric ice particles at exceptionally high altitudes
    (München : European Geopyhsical Union, 2009) Megner, L.; Khaplanov, M.; Baumgarten, G.; Gumbel, J.; Stegman, J.; Strelnikov, B.; Robertson, S.
    We here report on the characteristics of exceptionally high Noctilucent clouds (NLC) that were detected with rocket photometers during the ECOMA/MASS campaign at Andøya, Norway 2007. The results from three separate flights are shown and discussed in connection to lidar measurements. Both the lidar measurements and the large difference between various rocket passages through the NLC show that the cloud layer was inhomogeneous on large scales. Two passages showed a particularly high, bright and vertically extended cloud, reaching to approximately 88 km. Long time series of lidar measurements show that NLC this high are very rare, only one NLC measurement out of thousand reaches above 87 km. The NLC is found to consist of three distinct layers. All three were bright enough to allow for particle size retrieval by phase function analysis, even though the lowest layer proved too horizontally inhomogeneous to obtain a trustworthy result. Large particles, corresponding to an effective radius of 50 nm, were observed both in the middle and top of the NLC. The present cloud does not comply with the conventional picture that NLC ice particles nucleate near the temperature minimum and grow to larger sizes as they sediment to lower altitudes. Strong up-welling, likely caused by gravity wave activity, is required to explain its characteristics.
  • Item
    The atmospheric background situation in northern Scandinavia during January/February 2003 in the context of the MaCWAVE campaign
    (München : European Geopyhsical Union, 2006) Blum, U.; Baumgarten, G.; Schöch, A.; Kirkwood, S.; Naujokat, B.; Fricke, K.H.
    The atmosphere background wind field controls the propagation of gravity waves from the troposphere through the stratosphere into the mesosphere. During January 2003 the MaCWAVE campaign took place at Esrange, with the purpose of observing vertically ascending waves induced by orography. Temperature data from the U. Bonn lidar at Esrange (68° N/21° E) and the ALOMAR RMR lidar (69° N/16° E), wind data from Esrange MST radar ESRAD, as well as wind data from the ECMWF T106 model, are used to analyse the atmospheric background situation and its effect on mountain wave propagation during January/February 2003. Critical levels lead to dissipation of vertically ascending waves, thus mountain waves are not observable above those levels. In the first half of January a minor as well as a major stratospheric warming dominated the meteorological background situation. These warmings led to a wind reversal, thus to critical level filtering and consequently prevented gravity waves from propagating to high altitudes. While the troposphere was not transparent for stationary gravity waves most of the time, there was a period of eight days following the major warming with a transparent stratosphere, with conditions allowing gravity waves generated in the lower troposphere to penetrate the stratosphere up to the stratopause and sometimes even into the lower mesosphere. In the middle of February a minor stratospheric warming occurred, which again led to critical levels such that gravity waves were not able to ascend above the middle stratosphere. Due to the unfavourable troposphere and lower stratosphere conditions for gravity wave excitation and propagation, the source of the observed waves in the middle atmosphere is probably different from orography.
  • Item
    Propagation of short-period gravity waves at high-latitudes during the MaCWAVE winter campaign
    (München : European Geopyhsical Union, 2006) Nielsen, K.; Taylor, M.J.; Pautet, P.-D.; Fritts, D.C.; Mitchell, N.; Beldon, C.; Williams, B.P.; Singer, W.; Schmidlin, F.J.; Goldberg, R.A.
    As part of the MaCWAVE (Mountain and Convective Waves Ascending Vertically) winter campaign an all-sky monochromatic CCD imager has been used to investigate the properties of short-period mesospheric gravity waves at high northern latitudes. Sequential measurements of several nightglow emissions were made from Esrange, Sweden, during a limited period from 27–31 January 2003. Coincident wind measurements over the altitude range (~80–100 km) using two meteor radar systems located at Esrange and Andenes have been used to perform a novel investigation of the intrinsic properties of five distinct wave events observed during this period. Additional lidar and MSIS model temperature data have been used to investigate their nature (i.e. freely propagating or ducted). Four of these extensive wave events were found to be freely propagating with potential source regions to the north of Scandinavia. No evidence was found for strong orographic forcing by short-period waves in the airglow emission layers. The fifth event was most unusual exhibiting an extensive, but much smaller and variable wavelength pattern that appeared to be embedded in the background wind field. Coincident wind measurements indicated the presence of a strong shear suggesting this event was probably due to a large-scale Kelvin-Helmholtz instability.
  • Item
    Enhanced gravity-wave activity and interhemispheric coupling during the MaCWAVE/MIDAS northern summer program 2002
    (München : European Geopyhsical Union, 2006) Becker, E.; Fritts, D.C.
    We present new sensitivity experiments that link observed anomalies of the mesosphere and lower thermosphere at high latitudes during the MaCWAVE/MIDAS summer program 2002 to enhanced planetary Rossby-wave activity in the austral winter troposphere. We employ the same general concept of a GCM having simplified representations of radiative and latent heating as in a previous study by Becker et al. (2004). In the present version, however, the model includes no gravity wave (GW) parameterization. Instead we employ a high vertical and a moderate horizontal resolution in order to describe GW effects explicitly. This is supported by advanced, nonlinear momentum diffusion schemes that allow for a self-consistent generation of inertia and mid-frequency GWs in the lower atmosphere, their vertical propagation into the mesosphere and lower thermosphere, and their subsequent dissipation which is induced by prescribed horizontal and vertical mixing lengths as functions of height. The main anomalies in northern summer 2002 consist of higher temperatures than usual above 82 km, an anomalous eastward mean zonal wind between 70 and 90 km, an altered meridional flow, enhanced turbulent dissipation below 80 km, and enhanced temperature variations associated with GWs. These signals are all reasonably described by differences between two long-integration perpetual model runs, one with normal July conditions, and another run with modified latent heating in the tropics and Southern Hemisphere to mimic conditions that correspond to the unusual austral winter 2002. The model response to the enhanced winter hemisphere Rossby-wave activity has resulted in both an interhemispheric coupling through a downward shift of the GW-driven branch of the residual circulation and an increased GW activity at high summer latitudes. Thus a quantitative explanation of the dynamical state of the northern mesosphere and lower thermosphere during June-August 2002 requires an enhanced Lorenz energy cycle and correspondingly enhanced GW sources in the troposphere, which in the model show up in both hemispheres.