Search Results

Now showing 1 - 3 of 3
  • Item
    Impacts of global change on water-related sectors and society in a trans-boundary central European river basin – Part 2: From eco-hydrology to water demand management
    (München : European Geopyhsical Union, 2007) Conradt, T.; Kaltofen, M.; Hentschel, M.; Hattermann, F.F.; Wechsung, F.
    This second part of the paper presents the details of the eco-hydrological model SWIM simulating the natural water supply and its coupling to WBalMo, a water management model. Based on the climate scenarios of the STAR model, SWIM simulates the natural water and matter fluxes for the entire Elbe River area. All relevant processes are modelled for hydrotopes and the resulting discharges are accumulated in subbasins. The output data are input for the water management model WBalMo and the quality models Moneris and QSim. WBalMo takes storage management, inputs and withdrawals into account and analyses how demands by industry, power plants and households will be met at changing natural supply conditions. Some of the first results shall be presented here.
  • Item
    Integrated analysis of water quality in a mesoscale lowland basin
    (München : European Geopyhsical Union, 2005) Habeck, A.; Krysanova, V.; Hattermann, F.
    This article describes a modelling study on nitrogen transport from diffuse sources in the Nuthe catchment, representing a typical lowland region in the north-eastern Germany. Building on a hydrological validation performed in advance using the ecohydrological model SWIM, the nitrogen flows were simulated over a 20-year period (1981-2000). The relatively good quality of the input data, particularly for the years from 1993 to 2000, enabled the nitrogen flows to be reproduced sufficiently well, although modelling nutrient flows is always associated with a great deal of uncertainty. Subsequently, scenario calculations were carried out in order to investigate how nitrogen transport from the catchment could be further reduced. The selected scenario results with the greatest reduction of nitrogen washoff will briefly be presented in the paper.
  • Item
    Large-scale hydrological modelling and the Water Framework Directive and Floods Directive of the European Union - 10th Workshop on Large-Scale Hydrological Modelling
    (München : European Geopyhsical Union, 2007) Lindenschmidt, K.-E.; Hattermann, F.; Mohaupt, V.; Merz, B.; Kundzewicz, Z.W.; Bronstert, A.
    In December 2000, the Water Framework Directive (WFD) of the European Union (EU) was enforced (EC, 2000) to provide a new legislative basis for water management in Europe. The main goal of the WFD is the implementation of river basin water management plans in which comprehensive studies of the current status of the surface and ground water bodies must be reported and management programs must be enforced with cost-effective measures with which a good ecological condition of the water bodies can be attained and sustained.