Search Results

Now showing 1 - 3 of 3
  • Item
    Emerging pattern of global change in the upper atmosphere and ionosphere
    (München : European Geopyhsical Union, 2008) Laštovička, J.; Akmaev, R.A.; Beig, G.; Bremer, J.; Emmert, J.T.; Jacobi, C.; Jarvis, M.J.; Nedoluha, G.; Portnyagin, Yu. I.
    In the upper atmosphere, greenhouse gases produce a cooling effect, instead of a warming effect. Increases in greenhouse gas concentrations are expected to induce substantial changes in the mesosphere, thermosphere, and ionosphere, including a thermal contraction of these layers. In this article we construct for the first time a pattern of the observed long-term global change in the upper atmosphere, based on trend studies of various parameters. The picture we obtain is qualitative, and contains several gaps and a few discrepancies, but the overall pattern of observed long-term changes throughout the upper atmosphere is consistent with model predictions of the effect of greenhouse gas increases. Together with the large body of lower atmospheric trend research, our synthesis indicates that anthropogenic emissions of greenhouse gases are affecting the atmosphere at nearly all altitudes between ground and space.
  • Item
    Enhanced gravity-wave activity and interhemispheric coupling during the MaCWAVE/MIDAS northern summer program 2002
    (München : European Geopyhsical Union, 2006) Becker, E.; Fritts, D.C.
    We present new sensitivity experiments that link observed anomalies of the mesosphere and lower thermosphere at high latitudes during the MaCWAVE/MIDAS summer program 2002 to enhanced planetary Rossby-wave activity in the austral winter troposphere. We employ the same general concept of a GCM having simplified representations of radiative and latent heating as in a previous study by Becker et al. (2004). In the present version, however, the model includes no gravity wave (GW) parameterization. Instead we employ a high vertical and a moderate horizontal resolution in order to describe GW effects explicitly. This is supported by advanced, nonlinear momentum diffusion schemes that allow for a self-consistent generation of inertia and mid-frequency GWs in the lower atmosphere, their vertical propagation into the mesosphere and lower thermosphere, and their subsequent dissipation which is induced by prescribed horizontal and vertical mixing lengths as functions of height. The main anomalies in northern summer 2002 consist of higher temperatures than usual above 82 km, an anomalous eastward mean zonal wind between 70 and 90 km, an altered meridional flow, enhanced turbulent dissipation below 80 km, and enhanced temperature variations associated with GWs. These signals are all reasonably described by differences between two long-integration perpetual model runs, one with normal July conditions, and another run with modified latent heating in the tropics and Southern Hemisphere to mimic conditions that correspond to the unusual austral winter 2002. The model response to the enhanced winter hemisphere Rossby-wave activity has resulted in both an interhemispheric coupling through a downward shift of the GW-driven branch of the residual circulation and an increased GW activity at high summer latitudes. Thus a quantitative explanation of the dynamical state of the northern mesosphere and lower thermosphere during June-August 2002 requires an enhanced Lorenz energy cycle and correspondingly enhanced GW sources in the troposphere, which in the model show up in both hemispheres.
  • Item
    Seasonal variations in the horizontal wind structure from 0-100 km above Rothera station, Antarctica (67° S, 68° W)
    (München : European Geopyhsical Union, 2005) Hibbins, R.E.; Shanklin, J.D.; Espy, P.J.; Jarvis, M.J.; Riggin, D.M.; Fritts, D.C.; Lübken, F.-J.
    A medium frequency spaced-antenna radar has been operating at Rothera station, Antarctica (67° S, 68° W) for two periods, between 1997-1998 and since 2002, measuring winds in the mesosphere and lower thermosphere. In this paper monthly mean winds are derived and presented along with three years of radiosonde balloon data for comparison with the HWM-93 model atmosphere and other high latitude southern hemisphere sites. The observed meridional winds are slightly more northwards than those predicted by the model above 80 km in the winter months and below 80 km in summer. In addition, the altitude of the summer time zero crossing of the zonal winds above the westward jet is overestimated by the model by up to 8 km. These data are then merged with the wind climatology obtained from falling sphere measurements made during the PORTA campaign at Rothera in early 1998 and the HWM-93 model atmosphere to generate a complete zonal wind climatology between 0 and 100 km as a benchmark for future studies at Rothera. A westwards (eastwards) maximum of 44 ms-1 at 67 km altitude occurs in mid December (62 ms-1 at 37 km in mid July). The 0 ms-1 wind contour reaches a maximum altitude of 90 km in mid November and a minimum altitude of 18 km in January extending into mid March at 75 km and early October at 76 km.