Search Results

Now showing 1 - 10 of 63
  • Item
    A case of extreme particulate matter concentrations over Central Europe caused by dust emitted over the southern Ukraine
    (München : European Geopyhsical Union, 2008) Birmili, W.; Schepanski, K.; Ansmann, A.; Spindler, G.; Tegen, I.; Wehner, B.; Nowak, A.; Reimer, E.; Mattis, I.; Müller, K.; Brüggemann, E.; Gnauk, T.; Herrmann, H.; Wiedensohler, A.; Althausen, D.; Schladitz, A.; Tuch, T.; Löschau, G.
    On 24 March 2007, an extraordinary dust plume was observed in the Central European troposphere. Satellite observations revealed its origins in a dust storm in Southern Ukraine, where large amounts of soil were resuspended from dried-out farmlands at wind gusts up to 30 m s−1. Along the pathway of the plume, maximum particulate matter (PM10) mass concentrations between 200 and 1400 μg m−3 occurred in Slovakia, the Czech Republic, Poland, and Germany. Over Germany, the dust plume was characterised by a volume extinction coefficient up to 400 Mm−1 and a particle optical depth of 0.71 at wavelength 0.532 μm. In-situ size distribution measurements as well as the wavelength dependence of light extinction from lidar and Sun photometer measurements confirmed the presence of a coarse particle mode with diameters around 2–3 μm. Chemical particle analyses suggested a fraction of 75% crustal material in daily average PM10 and up to 85% in the coarser fraction PM10–2.5. Based on the particle characteristics as well as a lack of increased CO and CO2 levels, a significant impact of biomass burning was ruled out. The reasons for the high particle concentrations in the dust plume were twofold: First, dust was transported very rapidly into Central Europe in a boundary layer jet under dry conditions. Second, the dust plume was confined to a relatively stable boundary layer of 1.4–1.8 km height, and could therefore neither expand nor dilute efficiently. Our findings illustrate the capacity of combined in situ and remote sensing measurements to characterise large-scale dust plumes with a variety of aerosol parameters. Although such plumes from Southern Eurasia seem to occur rather infrequently in Central Europe, its unexpected features highlights the need to improve the description of dust emission, transport and transformation processes needs, particularly when facing the possible effects of further anthropogenic desertification and climate change.
  • Item
    MALTE - Model to predict new aerosol formation in the lower troposphere
    (München : European Geopyhsical Union, 2006) Boy, M.; Hellmuth, O.; Korhonen, H.; Nilsson, E.D.; ReVelle, D.; Turnipseed, A.; Arnold, F.; Kulmala, M.
    The manuscript presents a detailed description of the meteorological and chemical code of Malte – a model to predict new aerosol formation in the lower troposphere. The aerosol dynamics are achieved by the new developed UHMA (University of Helsinki Multicomponent Aerosol Model) code with kinetic limited nucleation as responsible mechanism to form new clusters. First results indicate that the model is able to predict the on- and offset of new particle formation as well as the total aerosol number concentrations that were in good agreement with the observations. Further, comparison of predicted and measured H2SO4 concentrations showed a satisfactory agreement. The simulation results indicated that at a certain transitional particle diameter (2–7 nm), organic molecules can begin to contribute significantly to the growth rate compared to sulphuric acid. At even larger particle sizes, organic molecules can dominate the growth rate on days with significant monoterpene concentrations. The intraday vertical evolution of newly formed clusters and particles in two different size ranges resulted in two maxima at the ground. These particles grow around noon to the detectable size range and agree well with measured vertical profiles.
  • Item
    Columnar modelling of nucleation burst evolution in the convective boundary layer - First results from a feasibility study, Part III: Preliminary results on physicochemical model performance using two "clean air mass" reference scenarios
    (München : European Geopyhsical Union, 2006) Hellmuth, O.
    In Paper I of four papers, a revised columnar high-order model to investigate gas-aerosol-turbulence interactions in the convective boundary layer (CBL) was proposed. In Paper II, the model capability to predict first-, second- and third-order moments of meteorological variables in the CBL was demonstrated using available observational data. In the present Paper III, the high-order modelling concept is extended to sulphur and ammonia chemistry as well as to aerosol dynamics. Based on the previous CBL simulation, a feasibility study is performed using two "clean air mass" scenarios with an emission source at the ground but low aerosol background concentration. Such scenarios synoptically correspond to the advection of fresh post-frontal air in an anthropogenically influenced region. The aim is to evaluate the time-height evolution of ultrafine condensation nuclei (UCNs) and to elucidate the interactions between meteorological and physicochemical variables in a CBL column. The scenarios differ in the treatment of new particle formation (NPF), whereas homogeneous nucleation according to the classical nucleation theory (CNT) is considered. The first scenario considers nucleation of a binary system consisting of water vapour and sulphuric acid (H2SO4) vapour, the second one nucleation of a ternary system additionally involving ammonia (NH3). Here, the two synthetic scenarios are discussed in detail, whereas special attention is payed to the role of turbulence in the formation of the typical UCN burst behaviour, that can often be observed in the surface layer. The intercomparison of the two scenarios reveals large differences in the evolution of the UCN number concentration in the surface layer as well as in the time-height cross-sections of first-order moments and double correlation terms. Although in both cases the occurrence of NPF bursts could be simulated, the burst characteristics and genesis of the bursts are completely different. It is demonstrated, that observations from the surface layer alone are not conclusive to elucidate the origin of newly formed particles. This is also true with respect to the interpretation of box modelling studies. The binary and ternary NPF bursts observed in the surface layer differ with respect to burst amplitude and phase. New particles simulated in the binary scenario are formed in the forenoon in the upper part of the growing CBL, followed by turbulence-induced top-down transport. Hence, with respect to the burst observation site in the surface layer, new particles are formed ex situ. In opposite to this, the ternary case reveals a much more complex pattern. Here, NPF is initiated in the early morning hours in the surface layer, when temperature (T) is low and relative humidity (RH), sulphur dioxide (SO2) and NH3 concentrations are high, hence new particles are formed in situ. Shortly after that, ex situ NPF in the free troposphere sets in, followed by entrainment and top-down diffusion of newly formed particles into the surface layer. Altogether, these processes mainly contribute to the formation of a strong burst in the morning hours in the ternary scenario. While the time-height cross-section of the binary nucleation rate resembles a "blob"-like evolution pattern, the ternary one resembles a "sucking tube"-like pattern. The time-height cross-sections of the flux pattern and double correlations could be plausibly interpreted in terms of CBL turbulence and entrainment/detrainment processes both in the binary and in the ternary case. Although the present approach is a pure conceptual one, it shows the feasibility to simulate gas-aerosol-turbulence interactions in the CBL. Prior to a dedicated verification/validation study, further attempts are necessary to consider a more advanced description of the formation and activation of thermodynamically stable clusters according to modern concepts proposed by Kulmala et al. (2000), Kulmala (2003) and Kulmala et al. (2004a).
  • Item
    Cloud phase identification of Arctic boundary-layer clouds from airborne spectral reflection measurements: Test of three approaches
    (München : European Geopyhsical Union, 2008) Ehrlich, A.; Bierwirth, E.; Wendisch, M.; Gayet, J.-F.; Mioche, G.; Lampert, A.; Heintzenberg, J.
    Arctic boundary-layer clouds were investigated with remote sensing and in situ instruments during the Arctic Study of Tropospheric Aerosol, Clouds and Radiation (ASTAR) campaign in March and April 2007. The clouds formed in a cold air outbreak over the open Greenland Sea. Beside the predominant mixed-phase clouds pure liquid water and ice clouds were observed. Utilizing measurements of solar radiation reflected by the clouds three methods to retrieve the thermodynamic phase of the cloud are introduced and compared. Two ice indices IS and IP were obtained by analyzing the spectral pattern of the cloud top reflectance in the near infrared (1500–1800 nm wavelength) spectral range which is characterized by ice and water absorption. While IS analyzes the spectral slope of the reflectance in this wavelength range, IS utilizes a principle component analysis (PCA) of the spectral reflectance. A third ice index IA is based on the different side scattering of spherical liquid water particles and nonspherical ice crystals which was recorded in simultaneous measurements of spectral cloud albedo and reflectance. Radiative transfer simulations show that IS, IP and IA range between 5 to 80, 0 to 8 and 1 to 1.25 respectively with lowest values indicating pure liquid water clouds and highest values pure ice clouds. The spectral slope ice index IS and the PCA ice index IP are found to be strongly sensitive to the effective diameter of the ice crystals present in the cloud. Therefore, the identification of mixed-phase clouds requires a priori knowledge of the ice crystal dimension. The reflectance-albedo ice index IA is mainly dominated by the uppermost cloud layer (τ<1.5). Therefore, typical boundary-layer mixed-phase clouds with a liquid cloud top layer will be identified as pure liquid water clouds. All three methods were applied to measurements above a cloud field observed during ASTAR 2007. The comparison with independent in situ microphysical measurements shows the ability of the three approaches to identify the ice phase in Arctic boundary-layer clouds.
  • Item
    Columnar modelling of nucleation burst evolution in the convective boundary layer - First results from a feasibility study, Part II: Meteorological characterisation
    (München : European Geopyhsical Union, 2006) Hellmuth, O.
    While in Paper I of four papers a revised columnar high-order modelling approach to investigate gas-aerosol-turbulence interactions in the convective boundary layer (CBL) was deduced, in the present Paper II the model capability to predict the evolution of meteorological CBL parameters is demonstrated. Based on a model setup to simulate typical CBL conditions, predicted first-, second- and third-order moments were shown to agree very well with those obtained from in situ and remote sensing turbulence measurements such as aircraft, SODAR and LIDAR measurements as well as with those derived from ensemble-averaged large eddy simulations and wind tunnel experiments. The results show, that the model is able to predict the meteorological CBL parameters, required to verify or falsify, respectively, previous hypothesis on the interaction between CBL turbulence and new particle formation.
  • Item
    The contribution of sulphuric acid to atmospheric particle formation and growth: A comparison between boundary layers in Northern and Central Europe
    (München : European Geopyhsical Union, 2005) Fiedler, V.; Dal Maso, M.; Boy, M.; Aufmhoff, H.; Hoffmann, J.; Schuck, T.; Birmili, W.; Hanke, M.; Uecker, J.; Arnold, F.; Kulmala, M.
    Atmospheric gaseous sulphuric acid was measured and its influence on particle formation and growth was investigated building on aerosol data. The measurements were part of the EU-project QUEST and took place at two different measurement sites in Northern and Central Europe (Hyytiälä, Finland, March-April 2003 and Heidelberg, Germany, March-April 2004). From a comprehensive data set including sulphuric acid, particle number size distributions and meteorological data, particle growth rates, particle formation rates and source rates of condensable vapors were inferred. Growth rates were determined in two different ways, from particle size distributions as well as from a so-called timeshift analysis. Moreover, correlations between sulphuric acid and particle number concentration between 3 and 6 nm were examined and the influence of air masses of different origin was investigated. Measured maximum concentrations of sulphuric acid were in the range from 1x106 to 16x106cm-3. The gaseous sulphuric acid lifetime with respect to condensation on aerosol particles ranged from 2 to 33min in Hyytiälä and from 0.5 to 8 min in Heidelberg. Most calculated values (growth rates, formation rates, vapor source rates) were considerably higher in Central Europe (Heidelberg), due to the more polluted air and higher preexistent aerosol concentrations. Close correlations between H2SO4 and nucleation mode particles (size range: 3-6 nm) were found on most days at both sites. The percentage contribution of sulphuric acid to particle growth was below 10% at both places and to initial growth below 20%. An air mass analysis indicated that at Heidelberg new particles were formed predominantly in air advected from southwesterly directions.
  • Item
    Design and performance of an automatic regenerating adsorption aerosol dryer for continuous operation at monitoring sites
    (München : European Geopyhsical Union, 2009) Tuch, T.M.; Haudek, A.; Müller, T.; Nowak, A.; Wex, H.; Wiedensohler, A.
    Sizes of aerosol particles depend on the relative humidity of their carrier gas. Most monitoring networks require therefore that the aerosol is dried to a relative humidity below 50% r.H. to ensure comparability of measurements at different sites. Commercially available aerosol dryers are often not suitable for this purpose at remote monitoring sites. Adsorption dryers need to be regenerated frequently and maintenance-free single column Nafion dryers are not designed for high aerosol flow rates. We therefore developed an automatic regenerating adsorption aerosol dryer with a design flow rate of 1 m3/h. Particle transmission efficiency of this dryer has been determined during a 3 week experiment. The lower 50% cut-off was found to be smaller than 3 nm at the design flow rate of the instrument. Measured transmission efficiencies are in good agreement with theoretical calculations. One dryer has been successfully deployed in the Amazon river basin. We present data from this monitoring site for the first 6 months of measurements (February 2008–August 2008). Apart from one unscheduled service, this dryer did not require any maintenance during this time period. The average relative humidity of the dried aerosol was 27.1+/−7.5% r.H. compared to an average ambient relative humidity of nearly 80% and temperatures around 30°C. This initial deployment demonstrated that these dryers are well suitable for continuous operation at remote monitoring sites under adverse ambient conditions.
  • Item
    Long term measurements of submicrometer urban aerosols: Statistical analysis for correlations with meteorological conditions and trace gases
    (München : European Geopyhsical Union, 2003) Wehner, B.; Wiedensohler, A.
    Long-term measurements (over 4 years) of particle number size distributions (submicrometer particles, 3-800 nm in diameter), trace gases (NO, NO2, and O3), and meteorological parameters (global radiation, wind speed and direction, atmospheric pressure, etc.) were taken in a moderately polluted site in the city of Leipzig (Germany). The resulting complex data set was analyzed with respect to seasonal, weekly, and diurnal variation of the submicrometer aerosol. Car traffic produced a peak in the number size distribution at around 20 nm particle diameter during morning rush hour on weekdays. A second peak at 10-15 nm particle diameter occurred around noon during summer, confirmed by high correlation between concentration of particles less than 20 nm and the global radiation. This new-particle formation at noon was correlated with the amount of global radiation. A high concentration of accumulation mode particles (between 100 and 800 nm), which are associated with large particle-surface area, might prevent this formation. Such high particle concentration in the ultrafine region (particles smaller than 20 nm in diameter) was not detected in the particle mass, and thus, particle mass concentration is not suitable for determining the diurnal patterns of particles. In summer, statistical time series analysis showed a cyclic pattern of ultrafine particles with a period of one day and confirmed the correlation with global radiation. Principal component analysis (PCA) revealed a strong correlation between the particle concentration for 20-800 nm particles and the NO- and NO2-concentrations, indicating the influence of combustion processes on this broad size range, in particular during winter. In addition, PCA also revealed that particle concentration depended on meteorological conditions such as wind speed and wind direction, although the dependence differed with particle size class.
  • Item
    Origin of aerosol particles in the mid-latitude and subtropical upper troposphere and lowermost stratosphere from cluster analysis of CARIBIC data
    (München : European Geopyhsical Union, 2009) Köppe, M.; Hermann, M.; Brenninkmeijer, C.A.M.; Heintzenberg, J.; Schlager, H.; Schuck, T.; Slemr, F.; Sprung, D.; van Velthoven, P.F.J.; Wiedensohler, A.; Zahn, A.; Ziereis, H.
    The origin of aerosol particles in the upper troposphere and lowermost stratosphere over the Eurasian continent was investigated by applying cluster analysis methods to in situ measured data. Number concentrations of submicrometer aerosol particles and trace gas mixing ratios derived by the CARIBIC (Civil Aircraft for Regular Investigation of the Atmosphere Based on an Instrument Container) measurement system on flights between Germany and South-East Asia were used for this analysis. Four cluster analysis methods were applied to a test data set and their capability of separating the data points into scientifically reasonable clusters was assessed. The best method was applied to seasonal data subsets for summer and winter resulting in five cluster or air mass types: stratosphere, tropopause, free troposphere, high clouds, and boundary layer influenced. Other source clusters, like aircraft emissions could not be resolved in the present data set with the used methods. While the cluster separation works satisfactory well for the summer data, in winter interpretation is more difficult, which is attributed to either different vertical transport pathways or different chemical lifetimes in both seasons. The geographical distribution of the clusters together with histograms for nucleation and Aitken mode particles within each cluster are presented. Aitken mode particle number concentrations show a clear vertical gradient with the lowest values in the lowermost stratosphere (750–2820 particles/cm3 STP, minimum of the two 25% – and maximum of the two 75%-percentiles of both seasons) and the highest values for the boundary-layer-influenced air (4290–22 760 particles/cm3 STP). Nucleation mode particles are also highest in the boundary-layer-influenced air (1260–29 500 particles/cm3 STP), but are lowest in the free troposphere (0–450 particles/cm3 STP). The given submicrometer particle number concentrations represent the first large-scale seasonal data sets for the upper troposphere and lowermost stratosphere over the Eurasian continent.
  • Item
    Hygroscopic growth of sub-micrometer and one-micrometer aerosol particles measured during ACE-Asia
    (München : European Geopyhsical Union, 2007) Massling, A.; Leinert, S.; Wiedensohler, A.; Covert, D.
    Hygroscopic properties of aerosol particles in the sub-micrometer and one-micrometer size ranges were measured during the ACE-Asia study (Aerosol Characterization Experiment-Asia) in spring 2001. The measurements took place off the coasts of Japan, Korea, and China. All instruments contributing to this study were deployed in a container on the forward deck of the NOAA Research Vessel Ronald H. Brown. Air masses with primarily marine influence and air masses from the Asian continent affected by both anthropogenic sources and by the transport of desert dust aerosol were encountered during the cruise. Results showed very different hygroscopic behavior in the sub-micrometer size range compared to the one-micrometer size range. In general, for all continentally influenced air masses, the one-micrometer particle population was characterized by two different particle groups – a nearly hydrophobic fraction with growth factors around 1.0 representative of dust particles and a sea salt fraction with hygroscopic growth factors around 2.0. The number fraction of dust particles was generally about 60% independent of long-range air mass origin. For sub-micrometer particles, a dominant, more hygroscopic particle fraction with growth factors between 1.5 and 1.9 (depending on dry particle size) consistent with ammonium sulfate or non-neutralized sulfates as major component was always found. In marine air masses and for larger sizes within the sub-micrometer range (Dp=250 and 350 nm), a sea salt fraction with growth factors between 2.0 and 2.1 was also observed. For all other air masses, the more hygroscopic particle fraction in the sub-micrometer size range was mostly accompanied by a less hygroscopic particle fraction with growth factors between 1.20 and 1.55 depending on both the continental sources and the dry particle size. Number fractions of this particle group varied between 4 and 39% depending on dry particle size and air mass type. Nearly hydrophobic particles indicating dust particles in the sub-micrometer size regime were only found for particles with Dp=250 and 350 nm during a time period when the aerosol was influenced by transport from Asian desert regions.