Search Results

Now showing 1 - 3 of 3
  • Item
    High-field phase diagram of the heavy-fermion metal YbRh2Si2
    (Milton Park : Taylor & Francis, 2006) Gegenwart, P.; Tokiwa, Y.; Westerkamp, T.; Weickert, F.; Custers, J.; Ferstl, J.; Krellner, C.; Geibel, C.; Kerschl, P.; Müller, K.-H.; Steglich, F.
    The tetragonal heavy-fermion (HF) metal YbRh2Si2 (Kondo temperature TK≈ 25 K) exhibits a magnetic field-induced quantum critical point related to the suppression of very weak antiferromagnetic (AF) ordering (TN = 70 mK) at a critical field of Bc = 0.06 T (B⊥ c). To understand the influence of magnetic fields on quantum criticality and the Kondo effect, we study the evolution of various thermodynamic and magnetic properties upon tuning the system by magnetic field. At B > Bc, the AF component of the quantum critical fluctuations becomes suppressed, and FM fluctuations dominate. Their polarization with magnetic field gives rise to a large increase of the magnetization. At B* = 10 T, the Zeeman energy becomes comparable to kB TK, and a steplike decrease of the quasi-particle mass deduced from the specific-heat coefficient indicates the suppression of HF behaviour. The magnetization M(B) shows a pronounced decrease in slope at B* without any signature of metamagnetism. The field dependence of the linear magnetostriction coefficient suggests an increase of the Yb-valency with field, reaching 3+ at high fields. A negative hydrostatic pressure dependence of B* is found, similar to that of the Kondo temperature. We also compare the magnetization behaviour in pulsed fields up to 50 T with that of the isoelectronic HF system YbIr2Si2, which, due to a larger unit-cell volume, has an enhanced TK of about 40 K.
  • Item
    Hyper-domains in exchange bias micro-stripe pattern
    (Milton Park : Taylor & Francis, 2008) Theis-Bröhl, K.; Westphalen, A.; Zabel, H.; Rücker, U.; McCord, J.; Höink, V.; Schmalhorst, J.; Reiss, G.; Weis, T.; Engel, D.; Ehresmann, A.; Toperverg, B.P.
    A combination of experimental techniques, e.g. vector-MOKE magnetometry, Kerr microscopy and polarized neutron reflectometry, was applied to study the field induced evolution of the magnetization distribution over a periodic pattern of alternating exchange bias (EB) stripes. The lateral structure is imprinted into a continuous ferromagnetic/antiferromagnetic EB bilayer via laterally selective exposure to He-ion irradiation in an applied field. This creates an alternating frozen-in interfacial EB field competing with the external field in the course of the re-magnetization. It was found that in a magnetic field applied at an angle with respect to the EB axis parallel to the stripes the re-magnetization process proceeds via a variety of different stages. They include coherent rotation of magnetization towards the EB axis, precipitation of small random (ripple) domains, formation of a stripe-like alternation of the magnetization, and development of a state in which the magnetization forms large hyper-domains comprising a number of stripes. Each of those magnetic states is quantitatively characterized via the comprehensive analysis of data on specular and off-specular polarized neutron reflectivity. The results are discussed within a phenomenological model containing a few parameters, which can readily be controlled by designing systems with a desired configuration of magnetic moments of micro- and nano-elements.
  • Item
    Magnetically induced reorientation of martensite variants in constrained epitaxial Ni-Mn-Ga films grown on MgO(001)
    (Milton Park : Taylor & Francis, 2008) Thomas, M.; Heczko, O.; Buschbeck, J.; Rößler, U.K.; McCord, J.; Scheerbaum, N.; Schultz, L.; Fähler, S.
    Magnetically induced reorientation (MIR) is observed in epitaxial orthorhombic Ni-Mn-Ga films. Ni-Mn-Ga films have been grown epitaxially on heated MgO(001) substrates in the cubic austenite state. The unit cell is rotated by 45° relative to the MgO cell. The growth, structure texture and anisotropic magnetic properties of these films are described. The crystallographic analysis of the martensitic transition reveals variant selection dominated by the substrate constraint. The austenite state has low magnetocrystalline anisotropy. In the martensitic state, the magnetization curves reveal an orthorhombic symmetry having three magnetically non-equivalent axes. The existence of MIR is deduced from the typical hysteresis within the first quadrant in magnetization curves and independently by texture measurement without and in the presence of a magnetic field probing micro structural changes. An analytical model is presented, which describes MIR in films with constrained overall extension by the additional degree of freedom of an orthorhombic structure compared to the tetragonal structure used in the standard model.