Search Results

Now showing 1 - 2 of 2
  • Item
    Five-day planetary waves in the middle atmosphere from Odin satellite data and ground-based instruments in Northern Hemisphere summer 2003, 2004, 2005 and 2007
    (München : European Geopyhsical Union, 2008) Belova, A.; Kirkwood, S.; Murtagh, D.; Mitchell, N.; Singer, W.; Hocking, W.
    A number of studies have shown that 5-day planetary waves modulate noctilucent clouds and the closely related Polar Mesosphere Summer Echoes (PMSE) at the summer mesopause. Summer stratospheric winds should inhibit wave propagation through the stratosphere and, although some numerical models (Geisler and Dickinson, 1976) do show a possibility for upward wave propagation, it has also been suggested that the upward propagation may in practice be confined to the winter hemisphere with horizontal propagation of the wave from the winter to the summer hemisphere at mesosphere heights causing the effects observed at the summer mesopause. It has further been proposed (Garcia et al., 2005) that 5-day planetary waves observed in the summer mesosphere could be excited in-situ by baroclinic instability in the upper mesosphere. In this study, we first extract and analyze 5-day planetary wave characteristics on a global scale in the middle atmosphere (up to 54 km in temperature, and up to 68 km in ozone concentration) using measurements by the Odin satellite for selected days during northern hemisphere summer from 2003, 2004, 2005 and 2007. Second, we show that 5-day temperature fluctuations consistent with westward-traveling 5-day waves are present at the summer mesopause, using local ground-based meteor-radar observations. Finally we examine whether any of three possible sources of the detected temperature fluctuations at the summer mesopause can be excluded: upward propagation from the stratosphere in the summer-hemisphere, horizontal propagation from the winter-hemisphere or in-situ excitation as a result of the baroclinic instability. We find that in one case, far from solstice, the baroclinic instability is unlikely to be involved. In one further case, close to solstice, upward propagation in the same hemisphere seems to be ruled out. In all other cases, all or any of the three proposed mechanisms are consistent with the observations.
  • Item
    Mechanisms and time scales of glacial inception simulated with an Earth system model of intermediate complexity
    (München : European Geopyhsical Union, 2009) Calov, R.; Ganopolski, A.; Kubatzki, C.; Claussen, M.
    We investigate glacial inception and glacial thresholds in the climate-cryosphere system utilising the Earth system model of intermediate complexity CLIMBER-2, which includes modules for atmosphere, terrestrial vegetation, ocean and interactive ice sheets. The latter are described by the three-dimensional polythermal ice-sheet model SICOPOLIS. A bifurcation which represents glacial inception is analysed with two different model setups: one setup with dynamical ice-sheet model and another setup without it. The respective glacial thresholds differ in terms of maximum boreal summer insolation at 65° N (hereafter referred as Milankovitch forcing (MF)). The glacial threshold of the configuration without ice-sheet dynamics corresponds to a much lower value of MF compared to the full model. If MF attains values only slightly below the aforementioned threshold there is fast transient response. Depending on the value of MF relative to the glacial threshold, the transient response time of inland-ice volume in the model configuration with ice-sheet dynamics ranges from 10 000 to 100 000 years. Due to these long response times, a glacial threshold obtained in an equilibrium simulation is not directly applicable to the transient response of the climate-cryosphere system to time-dependent orbital forcing. It is demonstrated that in transient simulations just crossing of the glacial threshold does not imply large-scale glaciation of the Northern Hemisphere. We found that in transient simulations MF has to drop well below the glacial threshold determined in an equilibrium simulation to initiate glacial inception. Finally, we show that the asynchronous coupling between climate and inland-ice components allows one sufficient realistic simulation of glacial inception and, at the same time, a considerable reduction of computational costs.