Search Results

Now showing 1 - 2 of 2
  • Item
    The influence of geomagnetic activity on mesospheric summer echoes in middle and polar latitudes
    (München : European Geopyhsical Union, 2009) Zeller, O.; Bremer, J.
    The dependence of mesospheric VHF radar echoes during summer months on geomagnetic activity has been investigated with observation data of the OSWIN radar in Kühlungsborn (54° N) and of the ALWIN radar in Andenes (69° N). Using daily mean values of VHF radar echoes and of geomagnetic activity indices in superimposed epoch analyses, the comparison of both data sets shows in general stronger radar echoes on the day of the maximum geomagnetic activity, the maximum value one day after the geomagnetic disturbance, and enhanced radar echoes also on the following 2–3 days. This phenomenon is observed at middle and polar latitudes and can be explained by precipitating particle fluxes during the ionospheric post storm effect. At polar latitudes, the radar echoes decrease however during and one day after very strong geomagnetic disturbances. The possible reason of this surprising effect is discussed.
  • Item
    Long-term trends in the ionospheric E and F1 regions
    (Göttingen : Copernicus, 2008) Bremer, J.
    Ground based ionosonde measurements are the most essential source of information about long-term variations in the ionospheric E and F1 regions. Data of such observations have been derived at many different ionospheric stations all over the world some for more than 50 years. The standard parameters foE, h'E, and foF1 are used for trend analyses in this paper. Two main problems have to be considered in these analyses. Firstly, the data series have to be homogeneous, i.e. the observations should not be disturbed by artificial steps due to technical reasons or changes in the evaluation algorithm. Secondly, the strong solar and geomagnetic influences upon the ionospheric data have carefully to be removed by an appropriate regression analysis. Otherwise the small trends in the different ionospheric parameters cannot be detected. The trends derived at individual stations differ markedly, however their dependence on geographic or geomagnetic latitude is only small. Nevertheless, the mean global trends estimated from the trends at the different stations show some general behaviour (positive trends in foE and foF1, negative trend in h'E) which can at least qualitatively be explained by an increasing atmospheric greenhouse effect (increase of CO2 content and other greenhouse gases) and decreasing ozone values. The positive foE trend is also in qualitative agreement with rocket mass spectrometer observations of ion densities in the E region. First indications could be found that the changing ozone trend at mid-latitudes (before about 1979, between 1979 until 1995, and after about 1995) modifies the estimated mean foE trend.