Search Results

Now showing 1 - 9 of 9
  • Item
    Inertia gravity waves in the upper troposphere during the MaCWAVE winter campaign - Part II: Radar investigations and modelling studies
    (München : European Geopyhsical Union, 2006) Serafimovich, A.; Zülicke, Ch.; Hoffmann, P.; Peters, D.; Dalin, P.; Singer, W.
    We present an experimental and modelling study of a strong gravity wave event in the upper troposphere/lower stratosphere near the Scandinavian mountain ridge. Continuous VHF radar measurements during the MaCWAVE rocket and ground-based measurement campaign were performed at the Norwegian Andoya Rocket Range (ARR) near Andenes (69.3° N, 16° E) in January 2003. Detailed gravity wave investigations based on PSU/NCAR Fifth-Generation Mesoscale Model (MM5) data have been used for comparison with experimentally obtained results. The model data show the presence of a mountain wave and of an inertia gravity wave generated by a jet streak near the tropopause region. Temporal and spatial dependencies of jet induced inertia gravity waves with dominant observed periods of about 13 h and vertical wavelengths of ~4.5–5 km are investigated with wavelet transform applied on radar measurements and model data. The jet induced wave packet is observed to move upstream and downward in the upper troposphere. The model data agree with the experimentally obtained results fairly well. Possible reasons for the observed differences, e.g. in the time of maximum of the wave activity, are discussed. Finally, the vertical fluxes of horizontal momentum are estimated with different methods and provide similar amplitudes. We found indications that the derived positive vertical flux of the horizontal momentum corresponds to the obtained parameters of the jet-induced inertia gravity wave, but only at the periods and heights of the strongest wave activity.
  • Item
    Latitudinal wave coupling of the stratosphere and mesosphere during the major stratospheric warming in 2003/2004
    (München : European Geopyhsical Union, 2008) Pancheva, D.; Mukhtarov, P.; Mitchell, N.J.; Andonov, B.; Merzlyakov, E.; Singer, W.; Murayama, Y.; Kawamura, S.; Xiong, J.; Wan, W.; Hocking, W.; Fritts, D.; Riggin, D.; Meek, C.; Manson, A.
    The coupling of the dynamical regimes in the high- and low-latitude stratosphere and mesosphere during the major SSW in the Arctic winter of 2003/2004 has been studied. The UKMO zonal wind data were used to explore the latitudinal coupling in the stratosphere, while the coupling in the mesosphere was investigated by neutral wind measurements from eleven radars situated at high, high-middle and tropical latitudes. It was found that the inverse relationship between the variability of the zonal mean flows at high- and low-latitude stratosphere related to the SSW is produced by global-scale zonally symmetric waves. Their origin and other main features have been investigated in detail. Similar latitudinal dynamical coupling has been found for the mesosphere as well. Indirect evidence for the presence of zonally symmetric waves in the mesosphere has been found.
  • Item
    Five-day planetary waves in the middle atmosphere from Odin satellite data and ground-based instruments in Northern Hemisphere summer 2003, 2004, 2005 and 2007
    (München : European Geopyhsical Union, 2008) Belova, A.; Kirkwood, S.; Murtagh, D.; Mitchell, N.; Singer, W.; Hocking, W.
    A number of studies have shown that 5-day planetary waves modulate noctilucent clouds and the closely related Polar Mesosphere Summer Echoes (PMSE) at the summer mesopause. Summer stratospheric winds should inhibit wave propagation through the stratosphere and, although some numerical models (Geisler and Dickinson, 1976) do show a possibility for upward wave propagation, it has also been suggested that the upward propagation may in practice be confined to the winter hemisphere with horizontal propagation of the wave from the winter to the summer hemisphere at mesosphere heights causing the effects observed at the summer mesopause. It has further been proposed (Garcia et al., 2005) that 5-day planetary waves observed in the summer mesosphere could be excited in-situ by baroclinic instability in the upper mesosphere. In this study, we first extract and analyze 5-day planetary wave characteristics on a global scale in the middle atmosphere (up to 54 km in temperature, and up to 68 km in ozone concentration) using measurements by the Odin satellite for selected days during northern hemisphere summer from 2003, 2004, 2005 and 2007. Second, we show that 5-day temperature fluctuations consistent with westward-traveling 5-day waves are present at the summer mesopause, using local ground-based meteor-radar observations. Finally we examine whether any of three possible sources of the detected temperature fluctuations at the summer mesopause can be excluded: upward propagation from the stratosphere in the summer-hemisphere, horizontal propagation from the winter-hemisphere or in-situ excitation as a result of the baroclinic instability. We find that in one case, far from solstice, the baroclinic instability is unlikely to be involved. In one further case, close to solstice, upward propagation in the same hemisphere seems to be ruled out. In all other cases, all or any of the three proposed mechanisms are consistent with the observations.
  • Item
    Longitude-dependent decadal ozone changes and ozone trends in boreal winter months during 1960-2000
    (Göttingen : Copernicus, 2008) Peters, D.H.W.; Gabriel, A.; Entzian, G.
    This study examines the longitude-dependent decadal changes and trends of ozone for the boreal winter months during the period of 1960–2000. These changes are caused primarily by changes in the planetary wave structure in the upper troposphere and lower stratosphere. The decadal changes and trends over 4 decades of geopotential perturbations, defined as a deviation from the zonal mean, are estimated by linear regression with time. The decadal changes in longitude-dependent ozone were calculated with a simple transport model of ozone based on the known planetary wave structure changes and prescribed zonal mean ozone gradients. For December of the 1960s and 1980s a statistically significant Rossby wave track appeared over the North Atlantic and Europe with an anticyclonic disturbance over the Eastern North Atlantic and Western Europe, flanked by cyclonic disturbances. In the 1970s and 1990s statistically significant cyclonic disturbances appeared over the Eastern North Atlantic and Europe, surrounded by anticyclonic anomalies over Northern Africa, Central Asia and Greenland. Similar patterns have been found for January. The Rossby wave track over the North Atlantic and Europe is stronger in the 1980s than in the 1960s. For February, the variability of the regression patterns is higher. For January we found a strong alteration in the modelled decadal changes in total ozone over Central and Northern Europe, showing a decrease of about 15 DU in the 1960s and 1980s and an increase of about 10 DU in the 1970s and 1990s. Over Central Europe the positive geopotential height trend (increase of 2.3 m/yr) over 40 years is of the same order (about 100 m) as the increase in the 1980s alone. This is important to recognize because it implies a total ozone decrease over Europe of the order of 14 DU for the 1960–2000 period, for January, if we use the standard change regression relation that about a 10-m geopotential height increase at 300 hPa is related to about a 1.4-DU total ozone decrease.
  • Item
    Modelling the wintertime response to upper tropospheric and lower stratospheric ozone anomalies over the North Atlantic and Europe
    (Göttingen : Copernicus GmbH, 2003) Kirchner, I.; Peters, D.
    During boreal winter months, mean longitude-dependent ozone changes in the upper troposphere and lower stratosphere are mainly used by different ozone transport by planetary waves. The response to radiative perturbation induced by these ozone changes near the tropopause on the circulation is unclear. This response is investigated with the ECHAM4 general circulation model in a sensitivity study. In the simulation two different mean January realizations of the ozone field are implemented in ECHAM4. Both ozone fields are estimated on the basis of the observed mean January planetary wave structure of the 1980s. The first field represents a 14-year average (reference, 1979-1992) and the second one represents the mean ozone field change (anomaly, 1988-92) in boreal extra-tropics during the end of the 1980s. The model runs were carried out pairwise, with identical initial conditions for both ozone fields. Five statistically independent experiments were performed, forced with the observed sea surface temperatures for the period 1988 to 1992. The results support the hypothesis that the zonally asymmetric ozone changes of the 80s triggered a systematic alteration of the circulation over the North Atlantic - European region. It is suggested that this feedback process is important for the understanding of the decadal coupling between troposphere and stratosphere, as well as between subtropics and extra-tropics in winter.
  • Item
    Inertia gravity waves in the upper troposphere during the MaCWAVE winter campaign - Part I: Observations with collocated radars
    (München : European Geopyhsical Union, 2006) Hoffmann, P.; Serafimovich, A.; Peters, D.; Dalin, P.; Goldberg, R.; Latteck, R.
    During the {MaCWAVE} campaign, combined rocket, radiosonde and ground-based measurements have been performed at the Norwegian Andøya Rocket Range (ARR) near Andenes and the Swedish Rocket Range (ESRANGE) near Kiruna in January 2003 to study gravity waves in the vicinity of the Scandinavian mountain ridge. The investigations presented here are mainly based on the evaluation of continuous radar measurements with the ALWIN VHF radar in the upper troposphere/ lower stratosphere at Andenes (69.3° N, 16.0° E) and the ESRAD VHF radar near Kiruna (67.9° N, 21.9° E). Both radars are separated by about 260 km. Based on wavelet transformations of both data sets, the strongest activity of inertia gravity waves in the upper troposphere has been detected during the first period from 24–26 January 2003 with dominant vertical wavelengths of about 4–5 km as well as with dominant observed periods of about 13–14 h for the altitude range between 5 and 8 km under the additional influence of mountain waves. The results show the appearance of dominating inertia gravity waves with characteristic horizontal wavelengths of ~200 km moving in the opposite direction than the mean background wind. The results show the appearance of dominating inertia gravity waves with intrinsic periods in the order of ~5 h and with horizontal wavelengths of 200 km, moving in the opposite direction than the mean background wind. From the derived downward energy propagation it is supposed, that these waves are likely generated by a jet streak in the upper troposphere. The parameters of the jet-induced gravity waves have been estimated at both sites separately. The identified gravity waves are coherent at both locations and show higher amplitudes on the east-side of the Scandinavian mountain ridge, as expected by the influence of mountains.
  • Item
    Validation of the Atmospheric Chemistry Experiment (ACE) version 2.2 temperature using ground-based and space-borne measurements
    (München : European Geopyhsical Union, 2008) Sica, R.J.; Izawa, M.R.M.; Walker, K.A.; Boone, C.; Petelina, S.V.; Argall, P.S.; Bernath, P.; Burns, G.B.; Catoire, V.; Collins, R.L.; Daffer, W.H.; De Clercq, C.; Fan, Z.Y.; Firanski, B.J.; French, W.J.R.; Gerard, P.; Gerding, M.; Granville, J.; Innis, J.L.; Keckhut, P.; Kerzenmacher, T.; Klekociuk, A.R.; Kyrö, E.; Lambert, J.C.; Llewellyn, E.J.; Manney, G.L.; McDermid, I.S.; Mizutani, K.; Murayama, Y.; Piccolo, C.; Raspollini, P.; Ridolfi, M.; Robert, C.; Steinbrecht, W.; Strawbridge, K.B.; Strong, K.; Stübi, R.; Thurairajah, B.
    An ensemble of space-borne and ground-based instruments has been used to evaluate the quality of the version 2.2 temperature retrievals from the Atmospheric Chemistry Experiment Fourier Transform Spectrometer (ACE-FTS). The agreement of ACE-FTS temperatures with other sensors is typically better than 2 K in the stratosphere and upper troposphere and 5 K in the lower mesosphere. There is evidence of a systematic high bias (roughly 3–6 K) in the ACE-FTS temperatures in the mesosphere, and a possible systematic low bias (roughly 2 K) in ACE-FTS temperatures near 23 km. Some ACE-FTS temperature profiles exhibit unphysical oscillations, a problem fixed in preliminary comparisons with temperatures derived using the next version of the ACE-FTS retrieval software. Though these relatively large oscillations in temperature can be on the order of 10 K in the mesosphere, retrieved volume mixing ratio profiles typically vary by less than a percent or so. Statistical comparisons suggest these oscillations occur in about 10% of the retrieved profiles. Analysis from a set of coincident lidar measurements suggests that the random error in ACE-FTS version 2.2 temperatures has a lower limit of about ±2 K.
  • Item
    Upper stratospheric ozone decrease events due to a positive feedback between ozone and the ozone dissociation rate
    (Göttingen : Copernicus, 2009) Sonnemann, G.R.; Hartogh, P.
    Ozone measurements taken with a ground based microwave instrument at Lindau (51.66° N, 10.13° E) over some years showed strong ozone decrease events within the stratopause region, particularly during the winter half-year. These events are characterized by a marked drop of the ozone mixing ratio from two to three ppmv to less than half a ppmv in extreme cases. Simultaneous water vapor measurements at the same place, also carried out by a microwave instrument, showed a strong increase of its mixing ratio and the temperature was also enhanced during these episodes. The theoretical analysis brought evidence that these events result from a positive feedback in the complex radiatively-chemical system between the ozone column density and the ozone dissociation rate.
  • Item
    Very low ozone episodes due to polar vortex displacement
    (Milton Park : Taylor & Francis, 2000) James, P.M.; Peters, D.; Waugh, D.W.
    The large-scale ozone distribution over the northern hemisphere undergoes strong fluctuationseach winter on timescales of up to a few weeks. This is closely linked to changes in the stratosphericpolar vortex, whose shape, intensity and location vary with time. Elliptical diagnosticparameters provide an empirical description of the daily character of the polar vortex. Theseparameters are used as an objective measure to define two characteristic wintertime vortexdisplacements, towards northern Europe and Canada, respectively. The large-scale structuresin both the stratosphere and troposphere and the 3D ozone structures are determined for bothvortex displacement scenarios. A linear ozone transport model shows that the contribution ofhorizontal ozone advection dominates locally in the middle stratosphere. Nevertheless, thelargest contribution is due to vertical advection around the ozone layer maximum. The findingsare in agreement with an EOF analysis which reveals significant general modes of ozone variabilitylinked to polar vortex displacement and to phase-shifted large-scale tropospheric waves.When baroclinic waves travel through the regions of vortex-related ozone reduction, the combinedeffect is to produce transient synoptic-scale areas of exceptionally low ozone; namelydynamically induced strong ozone mini-holes.