Search Results

Now showing 1 - 10 of 36
  • Item
    Mechanisms of bonding effected by nanoparticles in zirconia coatings applied by spraying of suspensions
    (Saarbrücke : Leibniz-Institut für Neue Materialien, 2008) Adam, Jens; Aslan, Mesut; Drumm, Robert; Veith, Michael
    Zirconia coatings consisting of a mixture of coarse and fine grained zirconia powders prepared by spraying of suspensions and subsequent thermal treatment at limited temperatures (up to 500°C) are poor in adherence and in intrinsic mechanical strength. We have shown elsewhere that mechanical properties of these coatings can be improved clearly by adding a small amount of nanoscaled zirconia. Here, the structural and the chemical development of this coating material and of the nanoparticles is examined to gain information about the underlying bonding mechanisms. The applied temperature is relatively low in comparison to the usual onset temperature of accelerated sintering. Nevertheless, the results show that diffusion controlled material transport mechanisms play their role in bonding. The condensation of surface OH groups may participate in bonding, too. These first results confirm the potential of nanoparticles to act as inorganic binder. Additional research effort to clarify the underlying mechanisms in detail is of interest. For the practical side, it can be concluded that the resulting effect of mechanical consolidation of ceramic structures at relatively low temperatures enables new ceramic applications, for example a new type of ceramic coatings on metallic substrates.
  • Item
    Transparent conductive oxides for coating applications
    (Saarbrücke : Leibniz-Institut für Neue Materialien, 2009) Quilitz, Mario; Oliveira, Peter W. de; Heusing, Sabine; Veith, Michael
    Transparent, conductive oxides (TCOs) applied as coatings find multiple applications in various areas such as flat panel display setups, as electrodes in touch-screen panels, electrochromic devices, solar cells and in architectural applications for example as IR reflectors. The favored material in the class of TCOs is still ITO - Sn-doped In2O3 - due to its unique combination of high transparency and electrical conductivity. Though already very good, the potential of the ITO coatings with regard to their conductivity leaves some space for future improvements. Also ITO as a material has some serious drawbacks, such as limited availability and high costs. this work presents some stratgies to overcome these obstacles. One way to enhance the conductivities of alternative materials is to use carbon nanotubes as a dopant. This strategy was tested for ATO (Antimony-doped Tin Oxide), Titan dioxide and AZO (Aluminium-doped Zinc oxide). The results for these materials are presented. In coatings of ITO on glass or polymeric foils usually silica-based binders are used. They have the disadvantage to reduce the contact between the highly conducting grains and thus reduce overall conductivity in the composite. The matrix between the nanoparticles can be improved by several measures. Experiments with relevance in this direction are discussed. A third strategy aims at the reduction of costs in the process of ITO fabrication. Here one way to go is to use an electrochemical synthesis method. Results of the line of development are presented. Other strategies comprise the suitable processing of materials with a lower intrinsic conductivity or the search for materials with high intrinsic conductivity close to that of ITO. Exmples are presented and discussed.
  • Item
    Work on non photocatalytically active titania particles
    (Saarbrücke : Leibniz-Institut für Neue Materialien, 2009) Müller, Thomas S.; Faller-Schneider, Christine; Moh, Karsten; Shanmugasundaram, Sakthivel; Oliveira, Peter W. de; Veith, Michael
    Titanium dioxide has photocatalytic properties, i.e. under UV irradiation it develops an oxidative potential. In photocatalysis this is very desirable, but not when nano particulate titania is embedded into organic polymer matrices in order to increase the refractive index. UV irradiation would in this case destroy the material in the long run. For deactivation in general the titania is coated by e.g. silica or alumina which leads to other undesired effects like growth of the particle size and enhanced light scattering. The current work focuses on the application of techniques for doping during synthesis of crystallization of nano particulate TiO2. The photocatalysis activity was determined by degradation experiments of 4-chlorophenol using dip coated glass plates under artificial sunlight, where decreases of the photocatalytic effect of up to 90 % were found.
  • Item
    Zahnoberflächenversiegelung mit einer antiadhäsiven Nanokompositbeschichtung : Schlussbericht
    (Saarbrücken : Leibniz-Institut für Neue Materialien, 2009) Gerbes, S.; Brück, S.
    [no abstract available]
  • Item
    Entwicklung neuer Verarbeitungsprozesse für die Lebensmittelherstellung durch Anwendung von neuartigen funktionalen Materialoberflächen : Schlussbericht
    (Saarbrücken : Leibniz-Institut für Neue Materialien, 2007) INM
    [no abstract available]
  • Item
    Kelvin probe force microscopy of charged indentation-induced dislocation structures in KBr
    (Saarbrücken : Leibniz-Institut für neue Materialien, 2009) Egberts, Philip; Bennewitz, Roland
    The incipient stages of plasticity in KBr single crystals have been examined in ultrahigh vacuum by means of Atomic Force Microscopy and Kelvin Probe Force Microscopy (KPFM). Conducting diamond-coated tips have been used to both indent the crystals and image the resulting plastic deformation. KPFM reveals that edge dislocations intersecting the surface carry a negative charge similar to kinks in surface steps, while screw dislocations show no contrast. Weak topographic features extending in <110> direction from the indentation are identified by atomic-resolution imaging to be pairs of edge dislocations of opposite sign, separated by a distance similar to the indenter radius. They indicate the glide of two parallel {110} planes perpendicular to the surface, a process that allows for a slice of KBr to be pushed away from the indentation site.
  • Item
    Corrosion inhibiting cerium compounds for chromium-free corrosion protective coatings on AA 2024
    (Saarbrücke : Leibniz-Institut für Neue Materialien, 2007) Schem, Michael; Schmidt, Thomas; Caparrotti, Hinka; Wittmar, Matthias; Veith, Michael
    Due to the upcoming ban of chromium-containing corrosion protection coatings in the near future, there is a worldwide effort to find a replacement for chromium as a corrosion inhibitor that also exhibits self-healing properties in scratches but without the negative efects like health and environmental hazards. In the present study promising results to achieve this goal are shown by using cerium compounds incorporated into an organic-inorganic hybrid material produced by the sol-gel process. Cerium compounds like cerium nitrate, cerium nitrate plus acetylacetonate, cerium acetylacetonate, and cerium sulphate were incorporated in sol-gel coating systems. The corrosion protection properties of these coatings were determined by means of Electrochemical Impedance Spectroscopy (EIS) and in a conventional salt spray test. Furthermore, the leaching behaviour of the coatings was examined via Optical Emission Spectrometry (OES). Significant hints for self healing properties were obtained with a hybrid system doped with cerium nitrate in combination with acetylacetone.
  • Item
    Langzeitstabile Formtrennschichten auf BN-Basis für metallurgische Anwendungen : Schlussbericht
    (Hannover : Technische Informationsbibliothek (TIB), 2004) Schwetz, Karl; Adam, Jens; Drumm, Robert; Ehlen, Frank; Grossman, Kai; Hareesh, Nair
    [no abstract available]
  • Item
    One-dimensional oxide nanostructures: growth, applications and devices
    (Saarbrücke : Leibniz-Institut für Neue Materialien, 2008) Barth, Sven; Mathur, Sanjay; Hernandez-Ramireza, Francisco; Romano-Rodrigueza, Albert
    One dimensional (1D) inorganic materials are gaining high attention due to their structural stability and unique structural fatures. Among them, oxides are widely studied due to their well established application potential and mechanical as well as chemical stability. We have developed a generic approach for size-selective and site-specific growth of oxide nanowires by combination of a catalyst assisted growth mechanism and a molecular precursor approach, which is a viable alternative to other gas phase and solution procedures and produces well-defined (morphology and composition) materials.
  • Item
    Ultimate response dynamics achieved with gas sensors based on self-heated nanowires
    (Amsterdam : Elsevier, 2009) Prades, J.D.; Jimenez-Diaz, R.; Hernandez-Ramirez, F.; Romano-Rodriguez, A.; Mathur, S.; Morante, J.R.
    Bias current applied to conductometric gas sensors consisting of individual metal oxide nanowires can be used to heat them up to the temperature necessary for sensing. This approach in combination with the good sensitivity and stability of metal-oxide nanowires, can be used to develop prototypes with low power requirements (few tens of microwatts). Here, we present new sensors devices based on this approach that display fast dynamic performance only limited by the gas-solid interaction kinetics,. © 2009.