Search Results

Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Item

Large mesospheric ice particles at exceptionally high altitudes

2009, Megner, L., Khaplanov, M., Baumgarten, G., Gumbel, J., Stegman, J., Strelnikov, B., Robertson, S.

We here report on the characteristics of exceptionally high Noctilucent clouds (NLC) that were detected with rocket photometers during the ECOMA/MASS campaign at Andøya, Norway 2007. The results from three separate flights are shown and discussed in connection to lidar measurements. Both the lidar measurements and the large difference between various rocket passages through the NLC show that the cloud layer was inhomogeneous on large scales. Two passages showed a particularly high, bright and vertically extended cloud, reaching to approximately 88 km. Long time series of lidar measurements show that NLC this high are very rare, only one NLC measurement out of thousand reaches above 87 km. The NLC is found to consist of three distinct layers. All three were bright enough to allow for particle size retrieval by phase function analysis, even though the lowest layer proved too horizontally inhomogeneous to obtain a trustworthy result. Large particles, corresponding to an effective radius of 50 nm, were observed both in the middle and top of the NLC. The present cloud does not comply with the conventional picture that NLC ice particles nucleate near the temperature minimum and grow to larger sizes as they sediment to lower altitudes. Strong up-welling, likely caused by gravity wave activity, is required to explain its characteristics.

Loading...
Thumbnail Image
Item

Long-term behavior of the concentration of the minor constituents in the mesosphere-a model study

2009, Grygalashvyly, M., Sonnemann, G.R., Hartogh, P.

We investigate the influence the rising concentrations of methane, nitrous oxide and carbon dioxide which have occurred since the pre-industrial era, have had on the chemistry of the mesosphere. For this investigation we use our global 3-D-model COMMA-IAP which was designed for the exploration of the MLT-region and in particular the extended mesopause region. Assumptions and approximations for the trends in the Lyman-flux (needed for the water vapor dissociation rate), methane and the water vapor mixing ratio at the hygropause are necessary to accomplish this study. To approximate the solar Lyman-α flux back to the pre-industrial time, we derived a quadratic fit using the sunspot number record which extends back to 1749 and is the only solar proxy available for the Lyman-α flux prior to 1947. We assume that methane increases with a constant growth rate from the pre-industrial era to the present. An unsolved problem for the model calculations consists of how the water vapor mixing ratio at the hygropause should be specified during this period. We assume that the hygropause was dryer during pre-industrial times than the present. As a consequence of methane oxidation, the model simulation indicates that the middle atmosphere has become more humid as a result of the rising methane concentration, but with some dependence on height and with a small time delay of few years. The solar influence on the water vapor mixing ratio is insignificant below about 80 km in summer high latitudes, but becomes increasingly more important above this altitude. The enhanced water vapor concentration increasesthe hydrogen radical concentration and reduces the mesospheric ozone. A second region of stronger ozone decrease is located in the vicinity of the stratopause. Increases in CO2 concentration enhance slightly the concentration of CO in the mesosphere. However, its influence upon the chemistry is small and its main effect is connected with a cooling of the upper atmosphere. The long-term behavior of water vapor is discussed in particular with respect to its impact on the NLC region.