Search Results

Now showing 1 - 4 of 4
Loading...
Thumbnail Image
Item

Analyzing the causes and spatial pattern of the European 2003 carbon flux anomaly using seven models

2008, Vetter, M., Churkina, G., Jung, M., Reichstein, M., Zaehle, S., Bondeau, A., Chen, Y., Ciais, P., Feser, F., Freibauer, A., Geyer, R., Jones, C., Papale, D., Tenhunen, J., Tomelleri, E., Trusilova, K., Viovy, N., Heimann, M.

Globally, the year 2003 is associated with one of the largest atmospheric CO2 rises on record. In the same year, Europe experienced an anomalously strong flux of CO2 from the land to the atmosphere associated with an exceptionally dry and hot summer in Western and Central Europe. In this study we analyze the magnitude of this carbon flux anomaly and key driving ecosystem processes using simulations of seven terrestrial ecosystem models of different complexity and types (process-oriented and diagnostic). We address the following questions: (1) how large were deviations in the net European carbon flux in 2003 relative to a short-term baseline (1998–2002) and to longer-term variations in annual fluxes (1980 to 2005), (2) which European regions exhibited the largest changes in carbon fluxes during the growing season 2003, and (3) which ecosystem processes controlled the carbon balance anomaly . In most models the prominence of 2003 anomaly in carbon fluxes declined with lengthening of the reference period from one year to 16 years. The 2003 anomaly for annual net carbon fluxes ranged between 0.35 and –0.63 Pg C for a reference period of one year and between 0.17 and –0.37 Pg C for a reference period of 16 years for the whole Europe. In Western and Central Europe, the anomaly in simulated net ecosystem productivity (NEP) over the growing season in 2003 was outside the 1σ variance bound of the carbon flux anomalies for 1980–2005 in all models. The estimated anomaly in net carbon flux ranged between –42 and –158 Tg C for Western Europe and between 24 and –129 Tg C for Central Europe depending on the model used. All models responded to a dipole pattern of the climate anomaly in 2003. In Western and Central Europe NEP was reduced due to heat and drought. In contrast, lower than normal temperatures and higher air humidity decreased NEP over Northeastern Europe. While models agree on the sign of changes in simulated NEP and gross primary productivity in 2003 over Western and Central Europe, models diverge in the estimates of anomalies in ecosystem respiration. Except for two process models which simulate respiration increase, most models simulated a decrease in ecosystem respiration in 2003. The diagnostic models showed a weaker decrease in ecosystem respiration than the process-oriented models. Based on the multi-model simulations we estimated the total carbon flux anomaly over the 2003 growing season in Europe to range between –0.02 and –0.27 Pg C relative to the net carbon flux in 1998–2002.

Loading...
Thumbnail Image
Item

The millennial atmospheric lifetime of anthropogenic CO2

2008, Archer, D., Brovkin, V.

The notion is pervasive in the climate science community and in the public at large that the climate impacts of fossil fuel CO2 release will only persist for a few centuries. This conclusion has no basis in theory or models of the atmosphere/ocean carbon cycle, which we review here. The largest fraction of the CO2 recovery will take place on time scales of centuries, as CO2 invades the ocean, but a significant fraction of the fossil fuel CO2, ranging in published models in the literature from 20-60%, remains airborne for a thousand years or longer. Ultimate recovery takes place on time scales of hundreds of thousands of years, a geologic longevity typically associated in public perceptions with nuclear waste. The glacial/interglacial climate cycles demonstrate that ice sheets and sea level respond dramatically to millennial-timescale changes in climate forcing. There are also potential positive feedbacks in the carbon cycle, including methane hydrates in the ocean, and peat frozen in permafrost, that are most sensitive to the long tail of the fossil fuel CO2 in the atmosphere. © 2008 The Author(s).

Loading...
Thumbnail Image
Item

Sensitivity of polar stratospheric ozone loss to uncertainties in chemical reaction kinetics

2009, Kawa, S.R., Stolarski, R.S., Newman, P.A., Douglass, A.R., Rex, M., Hofmann, D.J., Santee, M.L., Frieler, K.

The impact and significance of uncertainties in model calculations of stratospheric ozone loss resulting from known uncertainty in chemical kinetics parameters is evaluated in trajectory chemistry simulations for the Antarctic and Arctic polar vortices. The uncertainty in modeled ozone loss is derived from Monte Carlo scenario simulations varying the kinetic (reaction and photolysis rate) parameters within their estimated uncertainty bounds. Simulations of a typical winter/spring Antarctic vortex scenario and Match scenarios in the Arctic produce large uncertainty in ozone loss rates and integrated seasonal loss. The simulations clearly indicate that the dominant source of model uncertainty in polar ozone loss is uncertainty in the Cl2O 2 photolysis reaction, which arises from uncertainty in laboratory-measured molecular cross sections at atmospherically important wavelengths. This estimated uncertainty in JCl 2O2 from laboratory measurements seriously hinders our ability to model polar ozone loss within useful quantitative error limits. Atmospheric observations, however, suggest that the Cl2O2 photolysis uncertainty may be less than that derived from the lab data. Comparisons to Match, South Pole ozonesonde, and Aura Microwave Limb Sounder (MLS) data all show that the nominal recommended rate simulations agree with data within uncertainties when the Cl2O2 photolysis error is reduced by a factor of two, in line with previous in situ ClOx measurements. Comparisons to simulations using recent cross sections from Pope et al. (2007) are outside the constrained error bounds in each case. Other reactions producing significant sensitivity in polar ozone loss include BrO + ClO and its branching ratios. These uncertainties challenge our confidence in modeling polar ozone depletion and projecting future changes in response to changing halogen emissions and climate. Further laboratory, theoretical, and possibly atmospheric studies are needed.

Loading...
Thumbnail Image
Item

Planetary geostrophic equations for the atmosphere with evolution of the barotropic flow

2009, Dolaptchiev, S.I., Klein, R.

Atmospheric phenomena such as the quasi-stationary Rossby waves, teleconnection patterns, ultralong persistent blockings and the polar/subtropical jet are characterized by planetary spatial scales, i.e. scales of the order of the earth's radius. This motivates our interest in the relevant physical processes acting on the planetary scales. Using an asymptotic approach, we systematically derive reduced model equations valid for atmospheric motions with planetary spatial scales and a temporal scale of the order of about 1 week. We assume variations of the background potential temperature comparable in magnitude with those adopted in the classical quasi-geostrophic theory. At leading order, the resulting equations include the planetary geostrophic balance. In order to apply these equations to the atmosphere, one has to prescribe a closure for the vertically averaged pressure. We present an evolution equation for this component of the pressure which was derived in a systematic way from the asymptotic analysis. Relative to the prognostic closures adopted in existing reduced-complexity planetary models, this new dynamical closure may provide for more realistic increased large-scale, long-time variability in future implementations. © 2008 Elsevier B.V. All rights reserved.