Search Results

Now showing 1 - 6 of 6
  • Item
    Simulation der Strahlhärtung von Stahl mit WIAS-SHarP
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2002) Buchwalder, A.; Hömberg, D.; Jurke, Th.; Spies, H.-J.; Weiss, W.
    Die Software WIAS-SHarP zur Simulation der Oberflaechenhaertung von Stahl mit Laser- und Elektronenstrahl wurde im Rahmen eines zweijaehrigen interdisziplinaeren Forschungsprojektes entwickelt. Das zugrunde liegende mathematische Modell besteht aus einem System gewoehnlicher Differentialgleichungen zur Beschreibung der Gefuegeumwandlungen, gekoppelt mit einer nichtlinearen Waermeleitungsgleichung sowie Komponenten zur Beschreibung der Energieeinkopplung. Um eine moeglichst breite Anwendbarkeit der Software zu gewaehrleisten, wurden werkstoffspezifische Kennwerte zum Umwandlungsverhalten fuer eine grosse Anzahl praxisrelevanter Staehle bereitgestellt. Zur Modellverifikation wurden experimentelle Untersuchungen bei beteiligten Industriepartnern durchgefuehrt und mit den entsprechenden Simulationsrechnungen verglichen.
  • Item
    A mathematical model for case hardening of steel
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2007) Fasano, Antonio; Hömberg, Dietmar; Panizzi, Lucia
    A mathematical model for the gas carburizing of steel is presented. Carbon is dissolved in the surface layer of a low-carbon steel part at a temperature sufficient to render the steel austenitic, followed by quenching to form a martensitic microstructure. The model consists of a nonlinear evolution equation for the temperature, coupled with a nonlinear evolution equation for the carbon concentration, both coupled with two ordinary differential equations to describe the phase fractions. We prove existence and uniqueness of a solution and finally present some numerical simulations.
  • Item
    Phase transition and hysteresis in a rechargeable lithium battery
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2007) Dreyer, Wolfgang; Gaberšček, Miran; Jamnik, Janko
    We represent a model which describes the evolution of a phase transition that occurs in some part of a rechargeable lithium battery during the process of charging/discharging. The model is capable to simulate the hysteretic behavior of the voltage - charge characteristics. During discharging of the battery, the interstitial lattice sites of a small crystalline host system are filled up with lithium atoms and these are released again during charging. We show within the context of a sharp interface model that two mechanical phenomena go along with a phase transition that appears in the host system during supply and removal of lithium. At first the lithium atoms need more space than it is available by the interstitial lattice sites, which leads to a maximal relative change of the crystal volume of about $6%$. Furthermore there is an interface between two adjacent phases that has very large curvature of the order of magnitude 100 m, which evoke here a discontinuity of the normal component of the stress. In order to simulate the dynamics of the phase transitions and in particular the observed hysteresis we establish a new initial and boundary value problem for a nonlinear PDE system that can be reduced in some limiting case to an ODE system.
  • Item
    Phase transition and hysteresis in a rechargeable lithium battery revisited
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2009) Dreyer, Wolfgang; Gaberscek, Miran; Guhlke, Clemens; Huth, Robert; Jamnik, Janko
    We revisit a model which describes the evolution of a phase transition that occurs in the cathode of a rechargeable lithium battery during the process of charging/discharging. The model is capable to simulate hysteretic behavior of the voltage
  • Item
    On a thermomechanical model of phase transitions in steel
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2007) Chełminski, Krzysztof; Hömberg, Dietmar; Kern, Daniela
    We investigate a thermomechanical model of phase transitions in steel. The strain is assumed to be additively decomposed into an elastic and a thermal part as well as a contribution from transformation induced plasticity. The resulting model can be viewed as an extension of quasistatic linear thermoelasticity. We prove existence of a unique solution and conclude with some numerical simulations.
  • Item
    Hysteresis in the context of hydrogen storage and lithium-ion batteries
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2009) Dreyer, Wolfgang; Guhlke, Clemens; Huth, Robert
    The processes of reversible storage of hydrogen in a metal by loading and unloading and of charging and discharging of lithium-ion batteries have many things in common. The both processes are accompanied by a phase transition and loading and unloading run along different paths, so that hysteretic behavior is observed. For hydrogen storage we consider a fine powder of magnesium (Mg) particles and lithium storage is studied for iron phosphate (FePO_4) particles forming the cathode of a lithium-ion battery. The mathematical models that are established in citeDGJ08 and citeDGH09a, describe phase transitions and hysteresis exclusively in a single particle and on that basis they can predict the observed hysteretic plots with almost horizontal plateaus. Interestingly the models predict that the coexistence of a 2-phase system in an individual particle disappears, if its size is below a critical value. However, measurements reveal that this is qualitatively not reflected by the mentioned hysteretic plots of loading and unloading. In other words: The behavior of a storage system consisting of many particles is qualitatively independent of the fact whether the individual particles itself develop a 2-phase system or if they remain in a single phase state. This apparent paradoxical observation will be resolved in this article. It will be shown that if each of the individual particles homogeneously distributes the supplied matter, nevertheless the many particle ensemble exhibits phase transition and hysteresis, because one of the two phases is realized in some part of the particles while the remaining part is in the other phase.