Search Results

Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Item

Electronic structure and magnetic properties of the spin-1/2 Heisenberg system CuSe2O5

2009, Janson, O., Schnelle, W., Schmidt, M., Prots, Yu, Drechsler, S.-L., Filatov, S.K., Rosner, H.

A microscopic magnetic model for the spin-1/2 Heisenberg chain compound CuSe2O5 is developed based on the results of a joint experimental and theoretical study. Magnetic susceptibility and specific heat data give evidence for quasi-one-dimensional (1D) magnetism with leading antiferromagnetic (AFM) couplings and an AFM ordering temperature of 17 K. For microscopic insight, full-potential density functional theory (DFT) calculations within the local density approximation (LDA) were performed. Using the resulting band structure, a consistent set of transfer integrals for an effective one-band tight-binding model was obtained. Electronic correlations were treated on a mean-field level starting from LDA (LSDA+U method) and on a model level (Hubbard model). With excellent agreement between experiment and theory, we find that only two couplings in CuSe2O5 are relevant: the nearest-neighbour intra-chain interaction of 165 K and a non-frustrated inter-chain (IC) coupling of 20 K. From a comparison with structurally related systems (Sr2Cu(PO4)2, Bi2CuO4), general implications for a magnetic ordering in presence of IC frustration are made.

Loading...
Thumbnail Image
Item

Domain wall asymmetries in Ni81Fe19/NiO: Proof of variable anisotropics in exchange bias systems

2009, McCord, Jeffrey, Schäfer, Rudolf

Multiple changes in the internal structure of magnetic domain walls due to alterations of the interfacial coupling across the ferromagnetic/antiferromagnetic interface are reported for Ni81Fe19/NiO exchange coupled films. Depending on the antiferromagnetically induced anisotropy, three different types of domain walls are observed. Cross-tie domain wall structures of decreased vortex to anti-vortex spacing develop with the addition of a thin antiferromagnetic layer. For exchange biased samples strong asymmetries in domain wall structure occur for the ascending and descending branch of the magnetization loop. For the descending branch a symmetric 180° Néel wall develops, whereas a folded cross-tie domain wall structure forms during magnetization reversal along the ascending loop branch. The novel type of 'zig-zagged' cross-tie wall is characterized by cross-ties reaching differently into the surrounding domain areas. The wall alterations indicate the existence of bi-modal coupling strengths in exchange coupled systems, which is in accordance with models of exchange bias that assume pinned and unpinned spins at the ferromagnetic/antiferromagnetic interface.