Search Results

Now showing 1 - 1 of 1
  • Item
    Validation of the Atmospheric Chemistry Experiment (ACE) version 2.2 temperature using ground-based and space-borne measurements
    (München : European Geopyhsical Union, 2008) Sica, R.J.; Izawa, M.R.M.; Walker, K.A.; Boone, C.; Petelina, S.V.; Argall, P.S.; Bernath, P.; Burns, G.B.; Catoire, V.; Collins, R.L.; Daffer, W.H.; De Clercq, C.; Fan, Z.Y.; Firanski, B.J.; French, W.J.R.; Gerard, P.; Gerding, M.; Granville, J.; Innis, J.L.; Keckhut, P.; Kerzenmacher, T.; Klekociuk, A.R.; Kyrö, E.; Lambert, J.C.; Llewellyn, E.J.; Manney, G.L.; McDermid, I.S.; Mizutani, K.; Murayama, Y.; Piccolo, C.; Raspollini, P.; Ridolfi, M.; Robert, C.; Steinbrecht, W.; Strawbridge, K.B.; Strong, K.; Stübi, R.; Thurairajah, B.
    An ensemble of space-borne and ground-based instruments has been used to evaluate the quality of the version 2.2 temperature retrievals from the Atmospheric Chemistry Experiment Fourier Transform Spectrometer (ACE-FTS). The agreement of ACE-FTS temperatures with other sensors is typically better than 2 K in the stratosphere and upper troposphere and 5 K in the lower mesosphere. There is evidence of a systematic high bias (roughly 3–6 K) in the ACE-FTS temperatures in the mesosphere, and a possible systematic low bias (roughly 2 K) in ACE-FTS temperatures near 23 km. Some ACE-FTS temperature profiles exhibit unphysical oscillations, a problem fixed in preliminary comparisons with temperatures derived using the next version of the ACE-FTS retrieval software. Though these relatively large oscillations in temperature can be on the order of 10 K in the mesosphere, retrieved volume mixing ratio profiles typically vary by less than a percent or so. Statistical comparisons suggest these oscillations occur in about 10% of the retrieved profiles. Analysis from a set of coincident lidar measurements suggests that the random error in ACE-FTS version 2.2 temperatures has a lower limit of about ±2 K.