Search Results

Now showing 1 - 3 of 3
  • Item
    Saharan dust transport and deposition towards the tropicalnorthern Atlantic
    (Göttingen : Copernicus, 2009) Schepanski, K.; Tegen, I.; MacKe, A.
    We present a study of Saharan dust export towards the tropical North Atlantic using the regional dust emission, transport and deposition model LM-MUSCAT. Horizontal and vertical distribution of dust optical thickness, concentration, and dry and wet deposition rates are used to describe seasonality of dust export and deposition towards the eastern Atlantic for three typical months in different seasons. Deposition rates strongly depend on the vertical dust distribution, which differs with seasons. Furthermore the contribution of dust originating from the Bod́eĺe Depression to Saharan dust over the Atlantic is investigated. A maximum contribution of Bod́eĺe dust transported towards the Cape Verde Islands is evident in winter when the Bod́eĺe source area is most active and dominant with regard to activation frequency and dust emission. Limitations of using satellite retrievals to estimate dust deposition are highlighted.
  • Item
    Modelling soil dust aerosol in the Bodélé depression during the BoDEx campaign
    (München : European Geopyhsical Union, 2006) Tegen, I.; Heinold, B.; Todd, M.; Helmert, J.; Washington, R.; Dubovik, O.
    We present regional model simulations of the dust emission events during the Bodélé Dust Experiment (BoDEx) that was carried out in February and March 2005 in Chad. A box model version of the dust emission model is used to test different input parameters for the emission model, and to compare the dust emissions computed with observed wind speeds to those calculated with wind speeds from the regional model simulation. While field observations indicate that dust production occurs via self-abrasion of saltating diatomite flakes in the Bodélé, the emission model based on the assumption of dust production by saltation and using observed surface wind speeds as input parameters reproduces observed dust optical thicknesses well. Although the peak wind speeds in the regional model underestimate the highest wind speeds occurring on 10–12 March 2005, the spatio-temporal evolution of the dust cloud can be reasonably well reproduced by this model. Dust aerosol interacts with solar and thermal radiation in the regional model; it is responsible for a decrease in maximum daytime temperatures by about 5 K at the beginning the dust storm on 10 March 2005. This direct radiative effect of dust aerosol accounts for about half of the measured temperature decrease compared to conditions on 8 March. Results from a global dust model suggest that the dust from the Bodélé is an important contributor to dust crossing the African Savannah region towards the Gulf of Guinea and the equatorial Atlantic, where it can contribute up to 40% to the dust optical thickness.
  • Item
    Spectral surface albedo over Morocco and its impact on radiative forcing of Saharan dust
    (Abingdon : Taylor & Francis, 2009) Bierwirth, E.; Wendisch, M.; Ehrlich, A.; Heese, B.; Tesche, M.; Althausen, D.; Schladitz, A.; Müller, D.; Otto, S.; Trautmann, T.; Dinter, T.; Von Hoyningen-Huene, W.; Kahn, R.
    In May-June 2006, airborne and ground-based solar (0.3-2.2 μm) and thermal infrared (4-42 μm) radiation measurements have been performed in Morocco within the Saharan Mineral Dust Experiment (SAMUM). Upwelling and downwelling solar irradiances have been measured using the Spectral Modular Airborne Radiation Measurement System (SMART)-Albedometer. With these data, the areal spectral surface albedo for typical surface types in southeastern Morocco was derived from airborne measurements for the first time. The results are compared to the surface albedo retrieved from collocated satellite measurements, and partly considerable deviations are observed. Using measured surface and atmospheric properties, the spectral and broad-band dust radiative forcing at top-of-atmosphere (TOA) and at the surface has been estimated. The impact of the surface albedo on the solar radiative forcing of Saharan dust is quantified. In the SAMUM case of 19 May 2006, TOA solar radiative forcing varies by 12 W m-2 per 0.1 surface-albedo change. For the thermal infrared component, values of up to +22 W m-2 were derived. The net (solar plus thermal infrared) TOA radiative forcing varies between -19 and +24 W m-2 for a broad-band solar surface albedo of 0.0 and 0.32, respectively. Over the bright surface of southeastern Morocco, the Saharan dust always has a net warming effect. © 2008 The Author Journal compilation © 2008 Blackwell Munksgaard.