Search Results

Now showing 1 - 2 of 2
  • Item
    Adaptive smoothing of digital images: The R package adimpro
    (Los Angeles, Calif. : UCLA, Dept. of Statistics, 2007) Polzehl, J.; Tabelow, K.
    Digital imaging has become omnipresent in the past years with a bulk of applications ranging from medical imaging to photography. When pushing the limits of resolution and sensitivity noise has ever been a major issue. However, commonly used non-adaptive filters can do noise reduction at the cost of a reduced effective spatial resolution only. Here we present a new package adimpro for R, which implements the propagationseparation approach by (Polzehl arid Spokoiriy 2006) for smoothing digital images. This method naturally adapts to different structures of different size in the image and thus avoids oversmoothing edges and fine structures. We extend the method for imaging data with spatial correlation. Furthermore we show how the estimation of the dependence between variance and mean value can be included. We illustrate the use of the package through some examples.
  • Item
    A propagation-separation approach to estimate the autocorrelation in a time-series
    (Göttingen : Copernicus, 2008) Divine, D.V.; Polzehl, J.; Godtliebsen, F.
    The paper presents an approach to estimate parameters of a local stationary AR(1) time series model by maximization of a local likelihood function. The method is based on a propagation-separation procedure that leads to data dependent weights defining the local model. Using free propagation of weights under homogeneity, the method is capable of separating the time series into intervals of approximate local stationarity. Parameters in different regions will be significantly different. Therefore the method also serves as a test for a stationary AR(1) model. The performance of the method is illustrated by applications to both synthetic data and real time-series of reconstructed NAO and ENSO indices and GRIP stable isotopes.