Search Results

Now showing 1 - 3 of 3
  • Item
    Design and performance of an automatic regenerating adsorption aerosol dryer for continuous operation at monitoring sites
    (München : European Geopyhsical Union, 2009) Tuch, T.M.; Haudek, A.; Müller, T.; Nowak, A.; Wex, H.; Wiedensohler, A.
    Sizes of aerosol particles depend on the relative humidity of their carrier gas. Most monitoring networks require therefore that the aerosol is dried to a relative humidity below 50% r.H. to ensure comparability of measurements at different sites. Commercially available aerosol dryers are often not suitable for this purpose at remote monitoring sites. Adsorption dryers need to be regenerated frequently and maintenance-free single column Nafion dryers are not designed for high aerosol flow rates. We therefore developed an automatic regenerating adsorption aerosol dryer with a design flow rate of 1 m3/h. Particle transmission efficiency of this dryer has been determined during a 3 week experiment. The lower 50% cut-off was found to be smaller than 3 nm at the design flow rate of the instrument. Measured transmission efficiencies are in good agreement with theoretical calculations. One dryer has been successfully deployed in the Amazon river basin. We present data from this monitoring site for the first 6 months of measurements (February 2008–August 2008). Apart from one unscheduled service, this dryer did not require any maintenance during this time period. The average relative humidity of the dried aerosol was 27.1+/−7.5% r.H. compared to an average ambient relative humidity of nearly 80% and temperatures around 30°C. This initial deployment demonstrated that these dryers are well suitable for continuous operation at remote monitoring sites under adverse ambient conditions.
  • Item
    Comparison of NLC particle sizes derived from SCIAMACHY/Envisat observations with ground-based LIDAR measurements at ALOMAR (69° N)
    (München : European Geopyhsical Union, 2009) von Savigny, C.; Robert, C.E.; Baumgarten, G.; Bovensmann, H.; Burrows, J.P.
    SCIAMACHY, the Scanning Imaging Absorption spectroMeter for Atmospheric CHartographY has provided measurements of limb-scattered solar radiation in the 220 nm to 2380 nm wavelength range since summer of 2002. Measurements in the UV spectral range are well suited for the retrieval of particle sizes of noctilucent clouds (NLCs) and have been used to compile the largest existing satellite data base of NLC particle sizes. This paper presents a comparison of SCIAMACHY NLC size retrievals with the extensive NLC particle size data set based on ground-based LIDAR measurements at the Arctic LIDAR Observatory for Middle Atmosphere Research (ALOMAR, 69° N, 16° E) for the Northern Hemisphere NLC seasons 2003 to 2007. Most of the presented SCIAMACHY NLC particle size retrievals are based on cylindrical particles and a Gaussian particle size distribution with a fixed width of 24 nm. If the differences in spatial as well as vertical resolution between SCIAMACHY and the ALOMAR LIDAR are taken into account, very good agreement is found. The mean particle size derived from SCIAMACHY limb observations for the ALOMAR overpasses in 2003 to 2007 is 56.2 nm with a standard deviation of 12.5 nm, and the LIDAR observations yield a value of 54.2 nm with a standard deviation of 17.4 nm.
  • Item
    Experimental characterization of the COndensation PArticle counting System for high altitude aircraft-borne application
    (München : European Geopyhsical Union, 2009) Weigel, R.; Hermann, M.; Curtius, J.; Voigt, C.; Walter, S.; Böttger, T.; Lepukhov, B.; Belyaev, G.; Borrmann, S.
    A characterization of the ultra-fine aerosol particle counter COPAS (COndensation PArticle counting System) for operation on board the Russian high altitude research aircraft M-55 Geophysika is presented. The COPAS instrument consists of an aerosol inlet and two dual-channel continuous flow Condensation Particle Counters (CPCs) operated with the chlorofluorocarbon FC-43. It operates at pressures between 400 and 50 hPa for aerosol detection in the particle diameter (dp) range from 6 nm up to 1 μm. The aerosol inlet, designed for the M-55, is characterized with respect to aspiration, transmission, and transport losses. The experimental characterization of counting efficiencies of three CPCs yields dp50 (50% detection particle diameter) of 6 nm, 11 nm, and 15 nm at temperature differences (ΔT) between saturator and condenser of 17°C, 30°C, and 33°C, respectively. Non-volatile particles are quantified with a fourth CPC, with dp50=11 nm. It includes an aerosol heating line (250°C) to evaporate H2SO4-H2O particles of 11 nm