Search Results

Now showing 1 - 2 of 2
  • Item
    Explaining global surface aerosol number concentrations in terms of primary emissions and particle formation
    (München : European Geopyhsical Union, 2010) Spracklen, D.V.; Carslaw, K.S.; Merikanto, J.; Mann, G.W.; Reddington, C.L.; Pickering, S.; Ogren, J.A.; Andrews, E.; Baltensperger, U.; Weingartner, E.; Boy, M.; Kulmala, M.; Laakso, L.; Lihavainen, H.; Kivekäs, N.; Komppula, M.; Mihalopoulos, N.; Kouvarakis, G.; Jennings, S.G.; O'Dowd, C.; Birmili, W.; Wiedensohler, A.; Weller, R.; Gras, J.; Laj, P.; Sellegri, K.; Bonn, B.; Krejci, R.; Laaksonen, A.; Hamed, A.; Minikin, A.; Harrison, R.M.; Talbot, R.; Sun, J.
    We synthesised observations of total particle number (CN) concentration from 36 sites around the world. We found that annual mean CN concentrations are typically 300–2000 cm−3 in the marine boundary layer and free troposphere (FT) and 1000–10 000 cm−3 in the continental boundary layer (BL). Many sites exhibit pronounced seasonality with summer time concentrations a factor of 2–10 greater than wintertime concentrations. We used these CN observations to evaluate primary and secondary sources of particle number in a global aerosol microphysics model. We found that emissions of primary particles can reasonably reproduce the spatial pattern of observed CN concentration (R2=0.46) but fail to explain the observed seasonal cycle (R2=0.1). The modeled CN concentration in the FT was biased low (normalised mean bias, NMB=−88%) unless a secondary source of particles was included, for example from binary homogeneous nucleation of sulfuric acid and water (NMB=−25%). Simulated CN concentrations in the continental BL were also biased low (NMB=−74%) unless the number emission of anthropogenic primary particles was increased or a mechanism that results in particle formation in the BL was included. We ran a number of simulations where we included an empirical BL nucleation mechanism either using the activation-type mechanism (nucleation rate, J, proportional to gas-phase sulfuric acid concentration to the power one) or kinetic-type mechanism (J proportional to sulfuric acid to the power two) with a range of nucleation coefficients. We found that the seasonal CN cycle observed at continental BL sites was better simulated by BL particle formation (R2=0.3) than by increasing the number emission from primary anthropogenic sources (R2=0.18). The nucleation constants that resulted in best overall match between model and observed CN concentrations were consistent with values derived in previous studies from detailed case studies at individual sites. In our model, kinetic and activation-type nucleation parameterizations gave similar agreement with observed monthly mean CN concentrations.
  • Item
    Pollution events observed during CARIBIC flights in the upper troposphere between South China and the Philippines
    (München : European Geopyhsical Union, 2010) Lai, S.C.; Baker, A.K.; Schuck, T.J.; van Velthoven, P.; Oram, D.E.; Zahn, A.; Hermann, M.; Weigelt, A.; Slemr, F.; Brenninkmeijer, C.A.M.; Ziereis, H.
    A strong pollution episode in the upper troposphere between South China and the Philippines was observed during CARIBIC flights in April 2007. Five pollution events were observed, where enhancements in aerosol and trace gas concentrations including CO, CO2, CH4, non-methane hydrocarbons (NMHCs) and halocarbons were observed along the flight tracks during four sequential flights. The importance of the contribution of biomass/biofuel burning was investigated using chemical tracers, emission factor analysis, back-trajectory analysis and satellite images. The Indochinese peninsula was identified as the probable source region of biomass/biofuel burning. However, enhancements in the urban/industrial tracer C2Cl4 during the events also indicate a substantial contribution from urban anthropogenic emissions. An estimation of the contribution of fossil fuel versus biomass/biofuel to the CO enhancement was made, indicating a biomass/biofuel burning contribution of ~54 to ~92% of the observed CO enhancements. Biomass/biofuel burning was found to be the most important source category during the sampling period.