Search Results

Now showing 1 - 10 of 1714
  • Item
    Methyl 5-chloro-2-hydr-oxy-3-(4-methoxyphenyl)-4,6-dimethylbenzoate
    (Chester : International Union of Crystallography, 2009) Adeel, M.; Ali, I.; Langer, P.; Villinger, A.
    In the title compound, C17H17ClO4, the dihedral angle between the mean planes of the two benzene rings is 65.92 (5)°. The methyl ester group lies within the ring plane [deviations of O atoms from the plane = -0.051 (2) and 0.151 (2) Å] due to an intra-molecular O - H⋯O hydrogen bond. In the crystal, molecules are held together by rather weak non-classical inter-molecular C - H⋯O hydrogen bonds, resulting in dimeric units about inversion centers, forming eight- and ten-membered ring systems as R22(8) and R2 2(10) motifs. © Adeel et al. 2009.
  • Item
    [1-Dimethylsilyl-2-phenyl-3-(η5-tetramethylcyclopentadienyl) prop-1-en-1-ylκC1](n5-pentamethylcyclopentadienyl)- titanium(III)
    (Chester : International Union of Crystallography, 2009) Lamač, M.; Spannenberg, A.; Arndt, P.; Rosenthal, U.
    The title compound, [Ti(C10H15)(C20H 26Si)], was obtained from the reaction of [Ti{5: 1-C5Me4(CH2)}(5-C 5Me5)] with the alkynylsilane PhC2SiMe 2H. The complex crystallizes with two independent mol-ecules in the asymmetric unit, which differ in the conformation of the propenyl unit, resulting in their having opposite helicity. No inter-molecular inter-actions or inter-actions involving the Si- H bond are present. The observed geometrical parameters are unexceptional compared to known structures of the same type.
  • Item
    Redetermination of EuScO3
    (Chester : International Union of Crystallography, 2009) Kahlenberg, V.; Maier, D.; Veličkov, B.
    Single crystals of europium(III) scandate(III), with ideal formula EuScO3, were grown from the melt using the micro-pulling-down method. The title compound crystallizes in an ortho-rhom-bic distorted perovskite-type structure, where Eu occupies the eightfold coordinated A sites (site symmetry m) and Sc resides on the centres of corner-sharing [ScO6] octa-hedra (B sites with site symmetry ). The structure of EuScO3 has been reported previously based on powder diffraction data [Liferovich & Mitchell (2004). J. Solid State Chem. 177, 2188-2197]. The results of the current redetermination based on single-crystal diffraction data shows an improvement in the precision of the structral and geometric parameters and reveals a defect-type structure. Site-occupancy refinements indicate an Eu deficiency on the A site coupled with O defects on one of the two O-atom positions. The crystallochemical formula of the investigated sample may thus be written as A(0.032Eu0.968)BScO2.952.
  • Item
    Iodidobis(≠5-penta-methyl-cyclo-penta-dien-yl)titanium(III)
    (Chester : International Union of Crystallography, 2010) Kessler, M.; Spannenberg, A.; Rosenthal, U.
    In the title complex mol-ecule, [Ti(C10H15) 2I], the paramagnetic Ti(III) atom is coordinated by two penta-methyl-cyclo-penta-dienyl (Cp*) ligands and one iodide ligand. The two Cp*ligands are in a staggered orientation. The coordination geometry at the titanium atom can be described as distorted trigonal-planar.
  • Item
    (μ5-Cyclo-penta-dien-yl)bis-(triphenyl-phosphane)cobalt(I) -toluene-n-hexane (1/0.20/0.25)
    (Chester : International Union of Crystallography, 2008) Hapke, M.; Spannenberg, A.
    The title compound, [Co(C5H5)(C18H15P)2]·0.2C7H8·0.25C6H14, was synthesized by the reaction of cobaltocene, Cp2Co, with elemental lithium in tetra-hydro-furan in the presence of two equivalents of PPh3. The mol-ecular structure displays a cobalt(I) center in a distorted trigonal-planar coordination environment, with one Cp and two phosphane ligands. There are two crystallographically independent mol-ecules in the asymmetric unit besides the disordered solvent molecules.
  • Item
    [2,2-Bis(diphenylphosphanyl)propane κ2P,P0] tetracarbonylchromium(0)dichloromethane monosolvate
    (Chester : International Union of Crystallography, 2010) Peulecke, N.; Peitz, S.; Müller, B.H.; Spannenberg, A.; Rosenthal, U.
    The title compound, [Cr(C27H26P2)(CO) 4]·CH2Cl2, was obtained by the reaction of Ph2PCMe2PPh2 with Cr(CO)6 in refluxing toluene by substitution of two carbonyl ligands. The CrC 4P2 coordination geometry at the Cr atom is distorted octa-hedral, with a P - Cr - P bite angle of 70.27 (2)°.
  • Item
    Redetermination of terbium scandate, revealing a defect-type perovskite derivative
    (Chester : International Union of Crystallography, 2008) Veličkov, B.; Kahlenberg, V.; Bertram, R.; Uecker, R.
    The crystal structure of terbium(III) scandate(III), with ideal formula TbScO3, has been reported previously on the basis of powder diffraction data [Liferovich & Mitchell (2004). J. Solid State Chem. 177, 2188-2197]. The current data were obtained from single crystals grown by the Czochralski method and show an improvement in the precision of the geometric parameters. Moreover, inductively coupled plasma optical emission spectrometry studies resulted in a nonstoichiometric composition of the title compound. Site-occupancy refinements based on diffraction data support the idea of a Tb deficiency on the A site (inducing O defects on the O2 position). The crystallochemical formula of the investigated sample thus may be written as A(0.04Tb0.96) BScO2.94. In the title compound, Tb occupies the eightfold- coordinated sites (site symmetry m) and Sc the centres of corner-sharing [ScO6] octa-hedra (site symmetry ). The mean bond lengths and site distortions fit well into the data of the remaining lanthanoid scandates in the series from DyScO3 to NdScO3. A linear structural evolution with the size of the lanthanoid from DyScO3 to NdScO3 can be predicted.
  • Item
    Occurrence of polar mesosphere summer echoes at very high latitudes
    (München : European Geopyhsical Union, 2009) Zecha, M.; Röttger, J.
    Observations of polar mesosphere summer echoes (PMSE) have been carried out during the summer periodes 1999–2001 and 2003–2004 at the very high latitude of 78° N using the SOUSY Svalbard Radar (53.5 MHz) at Longyearbyen. Although the measurements could not be done continuously in these seasons, PMSE have been detected over more than 6600 h of 9300 h of observation time overall. Using this data base, particular PMSE occurrence characteristics have been determined. PMSE at Svalbard appear from the middle of May to the end of August with an almost permanent total occurrence in June and July. Diurnal variations are observable in the height-depend occurrence rates and in PMSE thickness, they show a maximum around 09:00–10:00 UTC and a minimum around 21:00–22:00 UTC. PMSE occur nearly exclusively between a height of 80 km and 92 km with a maximum near 85 km. However, PMSE appear not simultaneously over the entire height range, the mean vertical PMSE extension is around 4–6 km in June and July. Furthermore, typically PMSE are separated into several layers, and only 30% of all PMSE are single layers. The probability of multiple layers is greater in June and July than at the beginning and the end of the PMSE season and shows a marked 5-day-variation. The same variation is noticeable in the seasonal dependence of the PMSE occurrence and the PMSE thickness. We finally discuss potential geophysical processes to explain our observational results.
  • Item
    The ECOMA 2007 campaign: Rocket observations and numerical modelling of aerosol particle charging and plasma depletion in a PMSE/NLC layer
    (München : European Geopyhsical Union, 2009) Brattli, A.; Lie-Svendsen, Ø.; Svenes, K.; Hoppe, U.-P.; Strelnikova, I.; Rapp, M.; Latteck, R.; Torkar, K.; Gumbel, J.; Megner, L.; Baumgarten, G.
    The ECOMA series of rocket payloads use a set of aerosol particle, plasma, and optical instruments to study the properties of aerosol particles and their interaction with the ambient plasma environment in the polar mesopause region. In August 2007 the ECOMA-3 payload was launched into a region with Polar Mesosphere Summer Echoes (PMSE) and noctilucent clouds (NLC). An electron depletion was detected in a broad region between 83 and 88 km, coincident with enhanced density of negatively charged aerosol particles. We also find evidence for positive ion depletion in the same region. Charge neutrality requires that a population of positively charged particles smaller than 2 nm and with a density of at least 2×108 m−3 must also have been present in the layer, undetected by the instruments. A numerical model for the charging of aerosol particles and their interaction with the ambient plasma is used to analyse the results, showing that high aerosol particle densities are required in order to explain the observed ion density depletion. The model also shows that a very high photoionisation rate is required for the particles smaller than 2 nm to become positively charged, indicating that these may have a lower work function than pure water ice.
  • Item
    The influence of geomagnetic activity on mesospheric summer echoes in middle and polar latitudes
    (München : European Geopyhsical Union, 2009) Zeller, O.; Bremer, J.
    The dependence of mesospheric VHF radar echoes during summer months on geomagnetic activity has been investigated with observation data of the OSWIN radar in Kühlungsborn (54° N) and of the ALWIN radar in Andenes (69° N). Using daily mean values of VHF radar echoes and of geomagnetic activity indices in superimposed epoch analyses, the comparison of both data sets shows in general stronger radar echoes on the day of the maximum geomagnetic activity, the maximum value one day after the geomagnetic disturbance, and enhanced radar echoes also on the following 2–3 days. This phenomenon is observed at middle and polar latitudes and can be explained by precipitating particle fluxes during the ionospheric post storm effect. At polar latitudes, the radar echoes decrease however during and one day after very strong geomagnetic disturbances. The possible reason of this surprising effect is discussed.