Search Results

Now showing 1 - 10 of 59
  • Item
    Emulating atmosphere-ocean and carbon cycle models with a simpler model, MAGICC6 - Part 2: Applications
    (München : European Geopyhsical Union, 2011) Meinshausen, M.; Raper, S.C.B.; Wigley, T.M.L.
    Intercomparisons of coupled atmosphere-ocean general circulation models (AOGCMs) and carbon cycle models are important for galvanizing our current scientific knowledge to project future climate. Interpreting such intercomparisons faces major challenges, not least because different models have been forced with different sets of forcing agents. Here, we show how an emulation approach with MAGICC6 can address such problems. In a companion paper (Meinshausen et al., 2011a), we show how the lower complexity carbon cycle-climate model MAGICC6 can be calibrated to emulate, with considerable accuracy, globally aggregated characteristics of these more complex models. Building on that, we examine here the Coupled Model Intercomparison Project's Phase 3 results (CMIP3). If forcing agents missed by individual AOGCMs in CMIP3 are considered, this reduces ensemble average temperature change from pre-industrial times to 2100 under SRES A1B by 0.4 °C. Differences in the results from the 1980 to 1999 base period (as reported in IPCC AR4) to 2100 are negligible, however, although there are some differences in the trajectories over the 21st century. In a second part of this study, we consider the new RCP scenarios that are to be investigated under the forthcoming CMIP5 intercomparison for the IPCC Fifth Assessment Report. For the highest scenario, RCP8.5, relative to pre-industrial levels, we project a median warming of around 4.6 °C by 2100 and more than 7 °C by 2300. For the lowest RCP scenario, RCP3-PD, the corresponding warming is around 1.5 °C by 2100, decreasing to around 1.1 °C by 2300 based on our AOGCM and carbon cycle model emulations. Implied cumulative CO2 emissions over the 21st century for RCP8.5 and RCP3-PD are 1881 GtC (1697 to 2034 GtC, 80% uncertainty range) and 381 GtC (334 to 488 GtC), when prescribing CO2 concentrations and accounting for uncertainty in the carbon cycle. Lastly, we assess the reasons why a previous MAGICC version (4.2) used in IPCC AR4 gave roughly 10% larger warmings over the 21st century compared to the CMIP3 average. We find that forcing differences and the use of slightly too high climate sensitivities inferred from idealized high-forcing runs were the major reasons for this difference.
  • Item
    Retrievals of chlorine chemistry kinetic parameters from Antarctic ClO microwave radiometer measurements
    (München : European Geopyhsical Union, 2011) Kremser, S.; Schofield, R.; Bodeker, G.E.; Connor, B.J.; Rex, M.; Barret, J.; Mooney, T.; Salawitch, R.J.; Canty, T.; Frieler, K.; Chipperfield, M.P.; Langematz, U.; Feng, W.
    Key kinetic parameters governing the partitioning of chlorine species in the Antarctic polar stratosphere were retrieved from 28 days of chlorine monoxide (ClO) microwave radiometer measurements made during the late winter/early spring of 2005 at Scott Base (77.85° S, 166.75° E). During day-time the loss of the ClO dimer chlorine peroxide (ClOOCl) occurs mainly by photolysis. Some time after sunrise, a photochemical equilibrium is established and the ClO/ClOOCl partitioning is determined by the ratio of the photolysis frequency, J, and the dimer formation rate, kf. The values of J and kf from laboratory studies remain uncertain to a considerable extent, and as a complement to these ongoing studies, the goal of this work is to provide a constraint on that uncertainty based on observations of ClO profiles in the Antarctic. First an optimal estimation technique was used to derive J/kf ratios for a range of Keq values. The optimal estimation forward model was a photochemical box model that takes J, kf, and Keq as inputs, together with a priori profiles of activated chlorine (ClOx = ClO+2×ClOOCl), profiles of ozone, temperature, and pressure. JPL06 kinetics are used as a priori in the optimal estimation and for all other chemistry in the forward model. Using the more recent JPL09 kinetics results in insignificant differences in the retrieved value of J/kf. A complementary approach was used to derive the optimal kinetic parameters; the full parameter space of J, kf, Keq and ClOx was sampled to find the minimum in differences between measured and modelled ClO profiles. Furthermore, values of Keq up to 2.0 times larger than recommended by JPL06 were explored to test the sensitivity of the J/kf ratio to changes in Keq. The results show that the retrieved J/kf ratios bracket the range of 1.23 to 1.97 times the J/kf value recommended by JPL06 over the range of Keq values considered. The retrieved J/kf ratios lie in the lower half of the large uncertainty range of J/kf recommended by JPL06 and towards the upper portion of the smaller uncertainty range recommended by JPL09.
  • Item
    Diurnal variation of midlatitudinal NO3 column abundance over table mountain facility, California
    (Göttingen : Copernicus GmbH, 2011) Chen, C.M.; Cageao, R.P.; Lawrence, L.; Stutz, J.; Salawitch, R.J.; Jourdain, L.; Li, Q.; Sander, S.P.
    The column abundance of NO3 was measured over Table Mountain Facility, CA (34.4° 117.7° W) from May 2003 through September 2004, using lunar occultation near full moon with a grating spectrometer. The NO 3 column retrieval was performed with the differential optical absorption spectroscopy (DOAS) technique using both the 623 and 662 nm NO 3 absorption bands. Other spectral features such as Fraunhofer lines and absorption from water vapor and oxygen were removed using solar spectra obtained at different airmass factors. We observed a seasonal variation, with nocturnally averaged NO3 columns between 5-7 × 1013 molec cm-2 during October through March, and 5-22 × 10 13 molec cm-2 during April through September. A subset of the data, with diurnal variability vastly different from the temporal profile obtained from one-dimensional stratospheric model calculations, clearly has boundary layer contributions; this was confirmed by simultaneous long-path DOAS measurements. However, even the NO3 columns that did follow the modeled time evolution were often much larger than modeled stratospheric partial columns constrained by realistic temperatures and ozone concentrations. This discrepancy is attributed to substantial tropospheric NO3 in the free troposphere, which may have the same time dependence as stratospheric NO 3.
  • Item
    Near-ubiquity of ice-edge blooms in the Arctic
    (Göttingen : Copernicus GmbH, 2011) Perrette, M.; Yool, A.; Quartly, G.D.; Popova, E.E.
    Ice-edge blooms are significant features of Arctic primary production, yet have received relatively little attention. Here we combine satellite ocean colour and sea-ice data in a pan-Arctic study. Ice-edge blooms occur in all seasonally ice-covered areas and from spring to late summer, being observed in 77-89% of locations for which adequate data exist, and usually peaking within 20 days of ice retreat. They sometimes form long belts along the ice-edge (greater than 100 km), although smaller structures were also found. The bloom peak is on average more than 1 mg m-3, with major blooms more than 10 mg m -3, and is usually located close to the ice-edge, though not always. Some propagate behind the receding ice-edge over hundreds of kilometres and over several months, while others remain stationary. The strong connection between ice retreat and productivity suggests that the ongoing changes in Arctic sea-ice may have a significant impact on higher trophic levels and local fish stocks.
  • Item
    Changes in alpine plant growth under future climate conditions
    (München : European Geopyhsical Union, 2010) Rammig, A.; Jonas, T.; Zimmermann, N.E.; Rixen, C.
    Alpine shrub- and grasslands are shaped by extreme climatic conditions such as a long-lasting snow cover and a short vegetation period. Such ecosystems are expected to be highly sensitive to global environmental change. Prolonged growing seasons and shifts in temperature and precipitation are likely to affect plant phenology and growth. In a unique experiment, climatology and plant growth was monitored for almost a decade at 17 snow meteorological stations in different alpine regions along the Swiss Alps. Regression analyses revealed highly significant correlations between mean air temperature in May/June and snow melt out, onset of plant growth, and plant height. These correlations were used to project plant growth phenology for future climate conditions based on the gridded output of a set of regional climate models runs. Melt out and onset of growth were projected to occur on average 17 days earlier by the end of the century than in the control period from 1971–2000 under the future climate conditions of the low resolution climate model ensemble. Plant height and biomass production were expected to increase by 77% and 45%, respectively. The earlier melt out and onset of growth will probably cause a considerable shift towards higher growing plants and thus increased biomass. Our results represent the first quantitative and spatially explicit estimates of climate change impacts on future growing season length and the respective productivity of alpine plant communities in the Swiss Alps.
  • Item
    The influence of vegetation, fire spread and fire behaviour on biomass burning and trace gas emissions: Results from a process-based model
    (München : European Geopyhsical Union, 2010) Thonicke, K.; Spessa, A.; Prentice, I.C.; Harrison, S.P.; Dong, L.; Carmona-Moreno, C.
    A process-based fire regime model (SPITFIRE) has been developed, coupled with ecosystem dynamics in the LPJ Dynamic Global Vegetation Model, and used to explore fire regimes and the current impact of fire on the terrestrial carbon cycle and associated emissions of trace atmospheric constituents. The model estimates an average release of 2.24 Pg C yr−1 as CO2 from biomass burning during the 1980s and 1990s. Comparison with observed active fire counts shows that the model reproduces where fire occurs and can mimic broad geographic patterns in the peak fire season, although the predicted peak is 1–2 months late in some regions. Modelled fire season length is generally overestimated by about one month, but shows a realistic pattern of differences among biomes. Comparisons with remotely sensed burnt-area products indicate that the model reproduces broad geographic patterns of annual fractional burnt area over most regions, including the boreal forest, although interannual variability in the boreal zone is underestimated.
  • Item
    Emulating coupled atmosphere-ocean and carbon cycle models with a simpler model, MAGICC6 - Part 1: Model description and calibration
    (München : European Geopyhsical Union, 2011) Meinshausen, M.; Raper, S.C.B.; Wigley, T.M.L.
    Current scientific knowledge on the future response of the climate system to human-induced perturbations is comprehensively captured by various model intercomparison efforts. In the preparation of the Fourth Assessment Report (AR4) of the Intergovernmental Panel on Climate Change (IPCC), intercomparisons were organized for atmosphere-ocean general circulation models (AOGCMs) and carbon cycle models, named "CMIP3" and "C4MIP", respectively. Despite their tremendous value for the scientific community and policy makers alike, there are some difficulties in interpreting the results. For example, radiative forcings were not standardized across the various AOGCM integrations and carbon cycle runs, and, in some models, key forcings were omitted. Furthermore, the AOGCM analysis of plausible emissions pathways was restricted to only three SRES scenarios. This study attempts to address these issues. We present an updated version of MAGICC, the simple carbon cycle-climate model used in past IPCC Assessment Reports with enhanced representation of time-varying climate sensitivities, carbon cycle feedbacks, aerosol forcings and ocean heat uptake characteristics. This new version, MAGICC6, is successfully calibrated against the higher complexity AOGCMs and carbon cycle models. Parameterizations of MAGICC6 are provided. The mean of the emulations presented here using MAGICC6 deviates from the mean AOGCM responses by only 2.2% on average for the SRES scenarios. This enhanced emulation skill in comparison to previous calibrations is primarily due to: making a "like-with-like comparison" using AOGCM-specific subsets of forcings; employing a new calibration procedure; as well as the fact that the updated simple climate model can now successfully emulate some of the climate-state dependent effective climate sensitivities of AOGCMs. The diagnosed effective climate sensitivity at the time of CO2 doubling for the AOGCMs is on average 2.88 °C, about 0.33 °C cooler than the mean of the reported slab ocean climate sensitivities. In the companion paper (Part 2) of this study, we examine the combined climate system and carbon cycle emulations for the complete range of IPCC SRES emissions scenarios and the new RCP pathways.
  • Item
    The Smithsonian solar constant data revisited: No evidence for a strong effect of solar activity in ground-based insolation data
    (Göttingen : Copernicus GmbH, 2011) Feulner, G.
    Apparent evidence for a strong signature of solar activity in ground-based insolation data was recently reported. In particular, a strong increase of the irradiance of the direct solar beam with sunspot number as well as a decline of the brightness of the solar aureole and the measured precipitable water content of the atmosphere with solar activity were presented. The latter effect was interpreted as evidence for cosmic-ray-induced aerosol formation. Here I show that these spurious results are due to a failure to correct for seasonal variations and the effects of volcanic eruptions and local pollution in the data. After correcting for these biases, neither the atmospheric water content nor the brightness of the solar aureole show any significant change with solar activity, and the variations of the solar-beam irradiance with sunspot number are in agreement with previous estimates. Hence there is no evidence for the influence of solar activity on the climate being stronger than currently thought.
  • Item
    Emulating Atlantic overturning strength for low emission scenarios: Consequences for sea-level rise along the North American east coast
    (München : European Geopyhsical Union, 2011) Schleussner, C.F.; Frieler, K.; Meinshausen, M.; Yin, J.; Levermann, A.
    In order to provide probabilistic projections of the future evolution of the Atlantic Meridional Overturning Circulation (AMOC), we calibrated a simple Stommeltype box model to emulate the output of fully coupled threedimensional atmosphere-ocean general circulation models (AOGCMs) of the Coupled Model Intercomparison Project (CMIP). Based on this calibration to idealised global warming scenarios with and without interactive atmosphere-ocean fluxes and freshwater perturbation simulations, we project the future evolution of the AMOC mean strength within the covered calibration range for the lower two Representative Concentration Pathways (RCPs) until 2100 obtained from the reduced complexity carbon cycle-climate model MAGICC 6. For RCP3-PD with a global mean temperature median below 1.0 C warming relative to the year 2000, we project an ensemble median weakening of up to 11% compared to 22% under RCP4.5 with a warming median up to 1.9 C over the 21st century. Additional Greenland meltwater of 10 and 20 cm of global sea-level rise equivalent further weakens the AMOC by about 4.5 and 10 %, respectively. By combining our outcome with a multi-model sea-level rise study we project a dynamic sea-level rise along the New York City coastline of 4 cm for the RCP3-PD and of 8 cm for the RCP4.5 scenario over the 21st century. We estimate the total steric and dynamic sea-level rise for New York City to be about 24 cm until 2100 for the RCP3-PD scenario, which can hold as a lower bound for sea-level rise projections in this region, as it does not include ice sheet and mountain glacier contributions.
  • Item
    The IPCC AR5 guidance note on consistent treatment of uncertainties: A common approach across the working groups
    (Heidelberg : Springer, 2011) Mastrandrea, Michael D.; Mach, Katharine J.; Plattner, Gian-Kasper; Edenhofer, Ottmar; Stocker, Thomas F.; Field, Christopher B.; Ebi, Kristie L.; Matschoss, Patrick R.
    Evaluation and communication of the relative degree of certainty in assessment findings are key cross-cutting issues for the three Working Groups of the Intergovernmental Panel on Climate Change. A goal for the Fifth Assessment Report, which is currently under development, is the application of a common framework with associated calibrated uncertainty language that can be used to characterize findings of the assessment process. A guidance note for authors of the Fifth Assessment Report has been developed that describes this common approach and language, building upon the guidance employed in past Assessment Reports. Here, we introduce the main features of this guidance note, with a focus on how it has been designed for use by author teams. We also provide perspectives on considerations and challenges relevant to the application of this guidance in the contribution of each Working Group to the Fifth Assessment Report. Despite the wide spectrum of disciplines encompassed by the three Working Groups, we expect that the framework of the new uncertainties guidance will enable consistent communication of the degree of certainty in their policy-relevant assessment findings.