Search Results

Now showing 1 - 10 of 21
  • Item
    Pyrimidine acyclo-C-nucleosides by ring transformations of 2-formyl-L-arabinal
    (Basel : MDPI, 2005) Bari, A.; Feist, H.; Michalik, M.; Peseke, K.
    The protected 2-formyl-L-arabinal 2 reacted with thiourea and cyanamide in the presence of sodium hydride to afford via ring transformations the 5-[1R,2S-1,2-bis(benzyloxy)-3-hydroxypropyl]-1,2-dihydropyrimidines 3 and 4, respectively. Similarly, treatment of 2 with 3-amino-2H-1,2,4-triazole yielded 6-[1R,25-1,2-bis(benzyloxy)-3-hydroxypropyl][1,2,4]-triazolo[1,5-a]pyrimidine(5) .
  • Item
    Keratin homogeneity in the tail feathers of Pavo cristatus and Pavo cristatus mut. alba
    (San Diego, Calif. : Elsevier, 2010) Pabisch, S.; Puchegger, S.; Kirchner, H.O.K.; Weiss, I.M.; Peterlik, H.
    The keratin structure in the cortex of peacocks' feathers is studied by X-ray diffraction along the feather, from the calamus to the tip. It changes considerably over the first 5. cm close to the calamus and remains constant for about 1. m along the length of the feather. Close to the tip, the structure loses its high degree of order. We attribute the X-ray patterns to a shrinkage of a cylindrical arrangement of β-sheets, which is not fully formed initially. In the final structure, the crystalline beta-cores are fixed by the rest of the keratin molecule. The hydrophobic residues of the beta-core are locked into a zip-like arrangement. Structurally there is no difference between the blue and the white bird. © 2010 Elsevier Inc.
  • Item
    Charge isomers of myelin basic protein: Structure and interactions with membranes, nucleotide analogues, and calmodulin
    (San Francisco, CA : Public Library of Science, 2011) Wang, C.; Neugebauer, U.; Bürck, J.; Myllykoski, M.; Baumgärtel, P.; Popp, J.; Kursula, P.
    As an essential structural protein required for tight compaction of the central nervous system myelin sheath, myelin basic protein (MBP) is one of the candidate autoantigens of the human inflammatory demyelinating disease multiple sclerosis, which is characterized by the active degradation of the myelin sheath. In this work, recombinant murine analogues of the natural C1 and C8 charge components (rmC1 and rmC8), two isoforms of the classic 18.5-kDa MBP, were used as model proteins to get insights into the structure and function of the charge isomers. Various biochemical and biophysical methods such as size exclusion chromatography, calorimetry, surface plasmon resonance, small angle X-ray and neutron scattering, Raman and fluorescence spectroscopy, and conventional as well as synchrotron radiation circular dichroism were used to investigate differences between these two isoforms, both from the structural point of view, and regarding interactions with ligands, including calmodulin (CaM), various detergents, nucleotide analogues, and lipids. Overall, our results provide further proof that rmC8 is deficient both in structure and especially in function, when compared to rmC1. While the CaM binding properties of the two forms are very similar, their interactions with membrane mimics are different. CaM can be used to remove MBP from immobilized lipid monolayers made of synthetic lipids - a phenomenon, which may be of relevance for MBP function and its regulation. Furthermore, using fluorescently labelled nucleotides, we observed binding of ATP and GTP, but not AMP, by MBP; the binding of nucleoside triphosphates was inhibited by the presence of CaM. Together, our results provide important further data on the interactions between MBP and its ligands, and on the differences in the structure and function between MBP charge isomers.
  • Item
    Timing cellular decision making under noise via cell-cell communication
    (San Francisco, CA : Public Library of Science (PLoS), 2009) Koseska, A.; Zaikin, A.; Kurths, J.; García-Ojalvo, J.
    Many cellular processes require decision making mechanisms, which must act reliably even in the unavoidable presence of substantial amounts of noise. However, the multistable genetic switches that underlie most decision-making processes are dominated by fluctuations that can induce random jumps between alternative cellular states. Here we show, via theoretical modeling of a population of noise-driven bistable genetic switches, that reliable timing of decision-making processes can be accomplished for large enough population sizes, as long as cells are globally coupled by chemical means. In the light of these results, we conjecture that cell proliferation, in the presence of cell-cell communication, could provide a mechanism for reliable decision making in the presence of noise, by triggering cellular transitions only when the whole cell population reaches a certain size. In other words, the summation performed by the cell population would average out the noise and reduce its detrimental impact.
  • Item
    Modification of Newton's law of gravity at very large distances
    (Amsterdam : Elsevier, 2002) Kirillov, A.A.; Turaev, D.
    We discuss a Modified Field Theory (MOFT) in which the number of fields can vary. It is shown that when the number of fields is conserved MOFT reduces to the standard field theory but interaction constants undergo an additional renormalization and acquire a dependence on spatial scales. In particular, the renormalization of the gravitational constant leads to the deviation of the law of gravity from the Newton's law in some range of scales rmin < r < rmax, in which the gravitational potential shows essentially logarithmic ∼ ln r (instead of 1/r) behavior. In this range, the renormalized value of the gravitational constant G increases and at scales r > rmax acquires a new constant value G′ ∼ Grmax/rmin. From the dynamical standpoint this looks as if every point source is surrounded with a halo of dark matter. It is also shown that if the maximal scale rmax is absent, the homogeneity of the dark matter in the Universe is consistent with a fractal distribution of baryons in space, in which the luminous matter is located on thin two-dimensional surfaces separated by empty regions of ever growing size.
  • Item
    An 8-fold parallel reactor system for combinatorial catalysis research
    (New York : Hindawi, 2006) Stoll, N.; Allwardt, A.; Dingerdissen, U.; Thurow, K.
    Increasing economic globalization and mounting time and cost pressure on the development of new raw materials for the chemical industry as well as materials and environmental engineering constantly raise the demands on technologies to be used. Parallelization, miniaturization, and automation are the main concepts involved in increasing the rate of chemical and biological experimentation. Copyright © 2006 Norbert Stoll et al.
  • Item
    Smart skin patterns protect springtails
    (San Francisco, CA : Public Library of Science, 2011) Helbig, R.; Nickerl, J.; Neinhuis, C.; Werner, C.
    Springtails, arthropods who live in soil, in decaying material, and on plants, have adapted to demanding conditions by evolving extremely effective and robust anti-adhesive skin patterns. However, details of these unique properties and their structural basis are still unknown. Here we demonstrate that collembolan skin can resist wetting by many organic liquids and at elevated pressures. We show that the combination of bristles and a comb-like hexagonal or rhombic mesh of interconnected nanoscopic granules distinguish the skin of springtails from anti-adhesive plant surfaces. Furthermore, the negative overhang in the profile of the ridges and granules were revealed to be a highly effective, but as yet neglected, design principle of collembolan skin. We suggest an explanation for the non-wetting characteristics of surfaces consisting of such profiles irrespective of the chemical composition. Many valuable opportunities arise from the translation of the described comb-like patterns and overhanging profiles of collembolan skin into man-made surfaces that combine stability against wear and friction with superior non-wetting and anti-adhesive characteristics.
  • Item
    An electronic analog of synthetic genetic networks
    (San Francisco, CA : Public Library of Science (PLoS), 2011) Hellen, E.H.; Volkov, E.; Kurths, J.; Dana, S.K.
    An electronic analog of a synthetic genetic network known as the repressilator is proposed. The repressilator is a synthetic biological clock consisting of a cyclic inhibitory network of three negative regulatory genes which produces oscillations in the expressed protein concentrations. Compared to previous circuit analogs of the repressilator, the circuit here takes into account more accurately the kinetics of gene expression, inhibition, and protein degradation. A good agreement between circuit measurements and numerical prediction is observed. The circuit allows for easy control of the kinetic parameters thereby aiding investigations of large varieties of potential dynamics.
  • Item
    Analysing dynamical behavior of cellular networks via stochastic bifurcations
    (San Francisco, CA : Public Library of Science (PLoS), 2011) Zakharova, A.; Kurths, J.; Vadivasova, T.; Koseska, A.
    The dynamical structure of genetic networks determines the occurrence of various biological mechanisms, such as cellular differentiation. However, the question of how cellular diversity evolves in relation to the inherent stochasticity and intercellular communication remains still to be understood. Here, we define a concept of stochastic bifurcations suitable to investigate the dynamical structure of genetic networks, and show that under stochastic influence, the expression of given proteins of interest is defined via the probability distribution of the phase variable, representing one of the genes constituting the system. Moreover, we show that under changing stochastic conditions, the probabilities of expressing certain concentration values are different, leading to different functionality of the cells, and thus to differentiation of the cells in the various types.
  • Item
    Alterations in Event Related Potentials (ERP) associated with tinnitus distress and attention
    (Dordrecht [u.a.] : Springer Science + Business Media B.V, 2008) Delb, W.; Strauss, D.J.; Low, Y.F.; Seidler, H.; Rheinschmitt, A.; Wobrock, T.; D'Amelio, R.
    Tinnitus related distress corresponds to different degrees of attention paid to the tinnitus. Shifting attention to a signal other than the tinnitus is therefore particularly difficult for patients with high tinnitus related distress. As attention effects on Event Related Potentials (ERP) have been shown this should be reflected in ERP measurements (N100, phase locking). In order to prove this hypothesis single sweep ERP recordings were obtained in 41 tinnitus patients as well as 10 control subjects during a period of time when attention was shifted to a tone (attended) and during a second phase (unattended) when they did not focus attention to the tone. Whereas tinnitus patients with low distress showed a significant reduction in both N100 amplitude and phase locking when comparing the attended and unattended measurement condition a group of patients with high tinnitus related distress did not show such ERP alterations. Using single sweep ERP measurements the results of our study show, that attention in high tinnitus related distress patients is captured by their tinnitus significantly more than in low distress patients. Furthermore our results provide the basis for future neurofeedback based tinnitus therapies aiming at maximizing the ability to shift attention away from the tinnitus. © 2008 The Author(s).