Search Results

Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Item

Bio-responsive polymer hydrogels homeostatically regulate blood coagulation

2013, Maitz, Manfred F., Freudenberg, U., Tsurkan, M.V., Fischer, M., Beyrich, T., Werner, C.

Bio-responsive polymer architectures can empower medical therapies by engaging molecular feedback-response mechanisms resembling the homeostatic adaptation of living tissues to varying environmental constraints. Here we show that a blood coagulation-responsive hydrogel system can deliver heparin in amounts triggered by the environmental levels of thrombin, the key enzyme of the coagulation cascade, which - in turn - becomes inactivated due to released heparin. The bio-responsive hydrogel quantitatively quenches blood coagulation over several hours in the presence of pro-coagulant stimuli and during repeated incubation with fresh, non-anticoagulated blood. These features enable the introduced material to provide sustainable, autoregulated anticoagulation, addressing a key challenge of many medical therapies. Beyond that, the explored concept may facilitate the development of materials that allow the effective and controlled application of drugs and biomolecules.

Loading...
Thumbnail Image
Item

Correlating the ancient Maya and modern european calendars with high-precision AMS 14C dating

2013, Kennett, D.J., Hajdas, I., Culleton, B.J., Belmecheri, S., Martin, S., Neff, H., Awe, J., Graham, H.V., Freeman, K.H., Newsom, L., Lentz, D.L., Anselmetti, F.S., Robinson, M., Marwan, N., Southon, J., Hodell, D.A., Haug, G.H.

The reasons for the development and collapse of Maya civilization remain controversial and historical events carved on stone monuments throughout this region provide a remarkable source of data about the rise and fall of these complex polities. Use of these records depends on correlating the Maya and European calendars so that they can be compared with climate and environmental datasets. Correlation constants can vary up to 1000 years and remain controversial.Wereport a series of high-resolution AMS14C dates on a wooden lintel collected from the Classic Period city of Tikal bearing Maya calendar dates. The radiocarbon dates were calibrated using a Bayesian statistical model and indicate that the dates were carved on the lintel betweenAD 658-696. This strongly supports the Goodman-Mart?nez-Thompson (GMT) correlation and the hypothesis that climate change played an important role in the development and demise of this complex civilization.