Search Results

Now showing 1 - 10 of 859
  • Item
    Occurrence of polar mesosphere summer echoes at very high latitudes
    (München : European Geopyhsical Union, 2009) Zecha, M.; Röttger, J.
    Observations of polar mesosphere summer echoes (PMSE) have been carried out during the summer periodes 1999–2001 and 2003–2004 at the very high latitude of 78° N using the SOUSY Svalbard Radar (53.5 MHz) at Longyearbyen. Although the measurements could not be done continuously in these seasons, PMSE have been detected over more than 6600 h of 9300 h of observation time overall. Using this data base, particular PMSE occurrence characteristics have been determined. PMSE at Svalbard appear from the middle of May to the end of August with an almost permanent total occurrence in June and July. Diurnal variations are observable in the height-depend occurrence rates and in PMSE thickness, they show a maximum around 09:00–10:00 UTC and a minimum around 21:00–22:00 UTC. PMSE occur nearly exclusively between a height of 80 km and 92 km with a maximum near 85 km. However, PMSE appear not simultaneously over the entire height range, the mean vertical PMSE extension is around 4–6 km in June and July. Furthermore, typically PMSE are separated into several layers, and only 30% of all PMSE are single layers. The probability of multiple layers is greater in June and July than at the beginning and the end of the PMSE season and shows a marked 5-day-variation. The same variation is noticeable in the seasonal dependence of the PMSE occurrence and the PMSE thickness. We finally discuss potential geophysical processes to explain our observational results.
  • Item
    Modelling the Surface Heat Flow Distribution in the Area of Brandenburg (Northern Germany)
    (Amsterdam [u.a.] : Elsevier, 2013) Cacace, Mauro; Scheck-Wenderoth, Magdalena; Noack, Vera; Cherubini, Yvonne; Schellschmidt, Rüdiger; Kühn, Michael; Juhlin, Christopher; Held, Hermann; Bruckman, Viktor; Tambach, Tim; Kempka, Thomas
    A lithosphere scale geological model has been used to determine the surface heat flow component due to conductive heat transport for the area of Brandenburg. The modelling results have been constrained by a direct comparison with available heat flow measurements. The calculated heat flow captures the regional trend in the surface heat flow distribution which can be related to existing thermal conductivity variations between the different sedimentary units. An additional advective component due to topography induced regional flow and focused flow within major fault zones should be considered to explain the spatial variation observed in the surface heat flow.
  • Item
    Dynamical studies on the generation of periodic surface structures by femtosecond laser pulses
    (Les Ulis : EDP Sciences, 2013) Rosenfeld, A.; Höhm, S.; Bonse, J.; Krüger, J.
    The dynamics of the formation of laser-induced periodic surface structures (LIPSS) on fused silica upon irradiation with linearly polarized fs-laser pulses (50 fs pulse duration, 800 nm center wavelength) is studied experimentally using a double pulse experiment with cross polarized pulse sequences and a trans illumination femtosecond time-resolved (0.1 ps - 1 ns) pump-probe diffraction approach. The results in both experiments confirm the importance of the ultrafast energy deposition and the laser-induced free-electron plasma in the conduction band of the solids for the formation of LIPSS.
  • Item
    Gas-discharge plasma-assisted functionalization of titanium implant surfaces
    (Baech : Trans Tech Publications Ltd., 2010) Schröder, Karsten; Finke, Birgit; Polak, Martin; Lüthen, Frank; Nebe, Barbara; Rychly, Joachim; Bader, Rainer; Lukowski, Gerold; Walschus, Uwe; Schlosser, Michael; Ohl, Andreas; Weltmann, Klaus Dieter
    A crucial factor for in-growth of metallic implants in the bone stock is the rapid cellular acceptance whilst prevention of bacterial adhesion on the surface. Such contradictorily adhesion events could be triggered by surface properties. There already exists fundamental knowledge about the influence of physicochemical surface properties like roughness, titanium dioxide modifications, cleanness, and (mainly ceramic) coatings on cell and microbial behavior in vitro and in vivo. The titanium surface can be equipped with antimicrobial properties by plasma-based copper implantation, which allows the release and generation of small concentrations of copper ions during contact with water-based biological liquids. Additionally, the titanium surface was equipped with amino groups by the deposition of an ultrathin plasma polymer. This coating on the one hand does not significantly reduce the generation of copper ions, and on the other hand improves the adhesion and spreading of osteoblast cells. The process development was accompanied by physicochemical surface analyses like XPS, FTIR, contact angle, SEM, and AFM. Very thin modified layers were created, which are resistant to hydrolysis and delamination. These titanium surface functionalizations were found to have either an antimicrobial activity or cell-adhesive properties. Intramuscular implantation of titanium samples coated with the cell-adhesive plasma polymer in rats revealed a reduced inflammation reaction compared to uncoated titanium. © (2010) Trans Tech Publications.
  • Item
    Nonlinear optical mechanism of forming periodical nanostructures in large bandgap dielectrics
    (Les Ulis : EDP Sciences, 2013) Grunwald, R.; Das, S.K.; Debroy, A.; McGlynn, E.; Messaoudi, H.
    Nonlinear excitation mechanisms of plasmons and their influence on femtosecond-laser induced sub-wavelength ripple generation on dielectric and semiconducting transparent materials are discussed. The agreement of theoretical and experimental data indicates the relevance of the model.
  • Item
    Preparation of clay mineral samples for high resolution x-ray imaging
    (Bristol : Institute of Physics Publishing, 2013) Abbati, G.; Seim, C.; Legall, H.; Stiel, H.; Thomas, N.; Wilhein, T.
    In the development of optimum ceramic materials for plastic forming, it is of fundamental importance to gain insight into the compositions of the clay minerals. Whereas spectroscopic methods are adequate for determining the elemental composition of a given sample, a knowledge of the spatial composition, together with the shape and size of the particles leads to further, valuable insight. This requires an imaging technique such as high resolution X-ray microscopy. In addition, fluorescence spectroscopy provides a viable element mapping technique. Since the fine particle fraction of the materials has a major effect on physical properties like plasticity, the analysis is focused mainly on the smallest particles. To separate these from the bigger agglomerates, the raw material has to pass through several procedures like centrifugation and filtering. After that, one has to deposit a layer of appropriate thickness on to a suitable substrate. These preparative techniques are described here, starting from the clay mineral raw materials and proceeding through to samples that are ready to analyze. First results using high resolution x-ray imaging are shown.
  • Item
    Characterization of L21 order in Co2FeSi thin films on GaAs
    (Bristol : Institute of Physics Publishing, 2013) Jenichen, B.; Hentschel, T.; Herfort, J.; Kong, X.; Trampert, A.; Zizak, I.
    Co2FeSi/GaAs(110) and Co2FeSi/GaAs(-1-1-1)B hybrid structures were grown by molecular-beam epitaxy (MBE) and characterized by transmission electron microscopy (TEM) and X-ray diffraction (XRD). The films contain inhomogeneous distributions of ordered L21 and B2 phases. The average stoichiometry could be determined by XRD for calibration of the MBE sources. Diffusion processes lead to inhomogeneities, influencing long-range order. An average L21 ordering of up to 65% was measured by grazing-incidence XRD. Lateral inhomogeneities of the spatial distribution of long-range order in Co2FeSi were imaged using dark-field TEM with superlattice reflections and shown to correspond to variations of the Co/Fe ratio.
  • Item
    Cathodoluminescence and TEM investigations of structural and optical properties of AlGaN on epitaxial laterally overgrown AlN/sapphire templates
    (Milton Park : Taylor & Francis, 2013) Zeimer, U.; Mogilatenko, A.; Kueller, V.; Knauer, A.; Weyers, M.
    Surface steps as high as 15 nm on up to 10 μm thick AlN layers grown on patterned AlN/sapphire templates play a major role for the structural and optical properties of AlxGa1−xN layers with x ≥ 0.5 grown subsequently by metalorganic vapour phase epitaxy. The higher the Ga content in these layers is, the stronger is the influence of the surface morphology on their properties. For x = 0.5 not only periodic inhomogeneities in the Al content due to growth of Ga-rich facets are observed by cathodoluminescence, but these facets give rise to additional dislocation formation as discovered by annular dark-field scanning transmission electron microscopy. For AlxGa1−xN layers with x = 0.8 the difference in Al content between facets and surrounding material is much smaller. Therefore, the threading dislocation density (TDD) is only defined by the TDD in the underlying epitaxially laterally overgrown (ELO) AlN layer. This way high quality Al0.8Ga0.2N with a thickness up to 1.5 μm and a TDD ≤ 5x108 cm−2 was obtained.
  • Item
    On the co-alignment of solar telescopes. A new approach to solar pointing
    (Milton Park : Taylor & Francis, 2013) Staiger, J.
    Helioseismological measurements require long observing times and thus may be adversely affected by lateral image drifts as caused by pointing instabilities. At the Vacuum Tower Telescope VTT, Tenerife we have recorded drift values of up to 5" per hour under unstable thermal conditions (dome opening, strong day-to-day thermal gradients). Typically drifts of 0.5" – 1.0" per hour may be encountered under more favorable conditions. Past experience has shown that most high-resolution solar telescopes may be affected by this problem to some degree. This inherent shortcoming of solar pointing is caused by the fact that the guiding loop can be closed only within the guiding beam but not within the telescope's main beam. We have developed a new approach to this problem. We correlate continuum brightness patterns observed from within the telescope main beam with patterns originating from a full disk telescope. We show that brightness patterns of sufficient size are unique with respect to solar location at any instant of time and may serve as a location identifier. We make use of the fact that averaged location information of solar structures is invariant with respect to telescope resolution. We have carried out tests at the VTT together with SDO. We have used SDO as a full disk reference. We were able to reduce lateral image drifts by an order of magnitude.
  • Item
    A compact laboratory transmission X-ray microscope for the water window
    (Bristol : Institute of Physics Publishing, 2013) Legall, H.; Stiel, H.; Blobel, G.; Seim, C.; Baumann, J.; Yulin, S.; Esser, D.; Hoefer, M.; Wiesemann, U.; Wirtz, M.; Schneider, G.; Rehbein, S.; Hertz, H.M.
    In the water window (2.2-4.4 nm) the attenuation of radiation in water is significantly smaller than in organic material. Therefore, intact biological specimen (e.g. cells) can be investigated in their natural environment. In order to make this technique accessible to users in a laboratory environment a Full-Field Laboratory Transmission X-ray Microscope (L-TXM) has been developed. The L-TXM is operated with a nitrogen laser plasma source employing an InnoSlab high power laser system for plasma generation. For microscopy the Ly α emission of highly ionized nitrogen at 2.48 nm is used. A laser plasma brightness of 5 × 1011 photons/(s × sr × μm2 in line at 2.48 nm) at a laser power of 70 W is demonstrated. In combination with a state-of-the-art Cr/V multilayer condenser mirror the sample is illuminated with 106 photons/(μm2 × s). Using objective zone plates 35-40 nm lines can be resolved with exposure times < 60 s. The exposure time can be further reduced to 20 s by the use of new multilayer condenser optics and operating the laser at its full power of 130 W. These exposure times enable cryo tomography in a laboratory environment.