Search Results

Now showing 1 - 2 of 2
  • Item
    Effects of high energy electrons on the properties of polyethylene / multiwalled carbon nanotubes composites: Comparison of as-grown and oxygen-functionalised MWCNT
    (Melville, NY : AIP, 2014) Krause, Beate; Pötschke, Petra; Gohs, U.
    Polymer modification with high energy electrons (EB) is well established in different applications for many years. It is used for crosslinking, curing, degrading, grafting of polymeric materials and polymerisation of monomers. In contrast to this traditional method, electron induced reactive processing (EIReP) combines the polymer modification with high energy electrons and the melt mixing process. This novel reactive method was used to prepare polymer blends and composites. In this study, both methods were used for the preparation of polyethylene (PE)/ multiwalled carbon nanotubes (MWCNT) composites in the presence of a coupling agent. The influence of MWCNT and type of electron treatment on the gel content, the thermal conductivity, rheological, and electrical properties was investigated whereby as-grown and oxidised MWCNT were used. In the presence of a coupling agent and at an absorbed dose of 40 kGy, the gel content increased from 57 % for the pure PE to 74 % or 88 % by the addition of as-grown (Baytubes® C150P) or oxidised MWCNT, respectively. In comparison to the composites containing the as-grown MWCNTs, the use of the oxidised MWCNTs led to higher melt viscosity and higher storage modulus due to higher yield of filler polymer couplings. The melt viscosity increased due to the addition of MWCNT and crosslinking of PE. The thermal conductivity increased to about 150 % and showed no dependence on the kind of MWCNT and the type of electron treatment. In contrast, the lowest value of electrical volume resistivity was found for the non-irradiated samples and after state of the art electron treatment without any influence of the type of MWCNT. In the case of EIReP, the volume resistivity increased by 2 (as-grown MWCNT) or 3 decades (oxidised MWCNT) depending on the process parameters. © 2014 American Institute of Physics.
  • Item
    Supramolecular assemblies of block copolymers as templates for fabrication of nanomaterials
    (New York, NY [u.a.] : Elsevier, 2011) Nandan, B.; Kuila, B.K.; Stamm, M.
    Self-assembled polymeric systems have played an important role as templates for nanofabrication; they offer nanotemplates with different morphologies and tunable sizes, are easily removed after reactions, and could be further modified with different functional groups to enhance the interactions. Among the various self-assembled polymeric systems, block copolymer supramolecular assemblies have received considerable attention because of the inherent processing advantages. These supramolecular assemblies are formed by the non-covalent interactions of one of the blocks of the block copolymer with a low molar-mass additive. Selective extraction of the additive leads to porous membranes or nano-objects which could then be used as templates for nanofabrication leading to a variety of ordered organic/inorganic nanostructures. In this feature article, we present an over-view of the recent developments in this area with a special focus on some examples from our group.