Search Results

Now showing 1 - 9 of 9
  • Item
    Chemical mass balance of 300 °c non-volatile particles at the tropospheric research site Melpitz, Germany
    (München : European Geopyhsical Union, 2014) Poulain, L.; Birmili, W.; Canonaco, F.; Crippa, M.; Wu, Z.J.; Nordmann, S.; Wiedensohler, A.; Held, A.; Spindler, G.; Prévôt, A.S.H.; Wiedensohler, A.; Herrmann, H.
    In the fine-particle mode (aerodynamic diameter < 1 μm) non-volatile material has been associated with black carbon (BC) and low-volatile organics and, to a lesser extent, with sea salt and mineral dust. This work analyzes non-volatile particles at the tropospheric research station Melpitz (Germany), combining experimental methods such as a mobility particle-size spectrometer (3–800 nm), a thermodenuder operating at 300 °C, a multi-angle absorption photometer (MAAP), and an aerosol mass spectrometer (AMS). The data were collected during two atmospheric field experiments in May–June 2008 as well as February–March 2009. As a basic result, we detected average non-volatile particle–volume fractions of 11 ± 3% (2008) and 17 ± 8% (2009). In both periods, BC was in close linear correlation with the non-volatile fraction, but not sufficient to quantitatively explain the non-volatile particle mass concentration. Based on the assumption that BC is not altered by the heating process, the non-volatile particle mass fraction could be explained by the sum of black carbon (47% in summer, 59% in winter) and a non-volatile organic contribution estimated as part of the low-volatility oxygenated organic aerosol (LV-OOA) (53% in summer, 41% in winter); the latter was identified from AMS data by factor analysis. Our results suggest that LV-OOA was more volatile in summer (May–June 2008) than in winter (February–March 2009) which was linked to a difference in oxidation levels (lower in summer). Although carbonaceous compounds dominated the sub-μm non-volatile particle mass fraction most of the time, a cross-sensitivity to partially volatile aerosol particles of maritime origin could be seen. These marine particles could be distinguished, however from the carbonaceous particles by a characteristic particle volume–size distribution. The paper discusses the uncertainty of the volatility measurements and outlines the possible merits of volatility analysis as part of continuous atmospheric aerosol measurements.
  • Item
    The impact of aerosol hygroscopic growth on the single-scattering albedo and its application on the NO2 photolysis rate coefficient
    (München : European Geopyhsical Union, 2014) Tao, J.C.; Zhao, C.S.; Ma, N.; Liu, P.F.
    Hygroscopic growth of aerosol particles can significantly affect their single-scattering albedo (ω), and consequently alters the aerosol effect on tropospheric photochemistry. In this study, the impact of aerosol hygroscopic growth on ω and its application to the NO2 photolysis rate coefficient (JNO2) are investigated for a typical aerosol particle population in the North China Plain (NCP). The variations of aerosol optical properties with relative humidity (RH) are calculated using a Mie theory aerosol optical model, on the basis of field measurements of number–size distribution and hygroscopic growth factor (at RH values above 90%) from the 2009 HaChi (Haze in China) project. Results demonstrate that ambient ω has pronouncedly different diurnal patterns from ω measured at dry state, and is highly sensitive to the ambient RHs. Ambient ω in the NCP can be described by a dry state ω value of 0.863, increasing with the RH following a characteristic RH dependence curve. A Monte Carlo simulation shows that the uncertainty of ω from the propagation of uncertainties in the input parameters decreases from 0.03 (at dry state) to 0.015 (RHs > 90%). The impact of hygroscopic growth on ω is further applied in the calculation of the radiative transfer process. Hygroscopic growth of the studied aerosol particle population generally inhibits the photolysis of NO2 at the ground level, whereas accelerates it above the moist planetary boundary layer. Compared with dry state, the calculated JNO2 at RH of 98% at the height of 1 km increases by 30.4%, because of the enhancement of ultraviolet radiation by the humidified scattering-dominant aerosol particles. The increase of JNO2 due to the aerosol hygroscopic growth above the upper boundary layer may affect the tropospheric photochemical processes and this needs to be taken into account in the atmospheric chemical models.
  • Item
    The Pagami Creek smoke plume after long-range transport to the upper troposphere over Europe – Aerosol properties and black carbon mixing state
    (München : European Geopyhsical Union, 2014) Dahlkötter, F.; Gysel, M.; Sauer, D.; Minikin, A.; Baumann, R.; Seifert, P.; Ansmann, A.; Fromm, M.; Voigt, C.; Weinzierl, B.
    During the CONCERT 2011 field experiment with the DLR research aircraft Falcon, an enhanced aerosol layer with particle linear depolarization ratios of 6–8% at 532 nm was observed at altitudes above 10 km over northeast Germany on 16 September 2011. Dispersion simulations with HYSPILT suggest that the elevated aerosol layer originated from the Pagami Creek forest fire in Minnesota, USA, which caused pyro-convective uplift of particles and gases. The 3–4 day-old smoke plume had high total refractory black carbon (rBC) mass concentrations of 0.03–0.35 μg m−3 at standard temperature and pressure (STP) with rBC mass equivalent diameter predominantly smaller than 130 nm. Assuming a core-shell particle structure, the BC cores exhibit very thick (median: 105–136 nm) BC-free coatings. A large fraction of the BC-containing particles disintegrated into a BC-free fragment and a BC fragment while passing through the laser beam of the Single Particle Soot Photometer (SP2). In this study, the disintegration is a result of very thick coatings around the BC cores. This is in contrast to a previous study in a forest-fire plume, where it was hypothesized to be a result of BC cores being attached to a BC-free particle. For the high-altitude forest-fire aerosol layer observed in this study, increased mass specific light-absorption cross sections of BC can be expected due to the very thick coatings around the BC cores, while this would not be the case for the attached-type morphology. We estimate the BC mass import from the Pagami Creek forest fire into the upper troposphere/lower stratosphere (UTLS) region (best estimate: 25 Mg rBC). A comparison to black carbon emission rates from aviation underlines the importance of pyro-convection on the BC load in the UTLS region. Our study provides detailed information on the microphysics and the mixing state of BC in the forest-fire aerosol layer in the upper troposphere that can be used to better understand and investigate the radiative impact of such upper tropospheric aerosol layers.
  • Item
    Tropospheric aerosol scattering and absorption over central Europe: A closure study for the dry particle state
    (München : European Geopyhsical Union, 2014) Ma, N.; Birmili, W.; Müller, T.; Tuch, T.; Cheng, Y.F.; Xu, W.Y.; Zhao, C.S.; Wiedensohler, A.
    This work analyses optical properties of the dry tropospheric aerosol measured at the regional Global Atmosphere Watch (GAW) observation site Melpitz in East Germany. For a continuous observation period between 2007 and 2010, we provide representative values of the dry-state scattering coefficient, hemispheric backscattering coefficient, absorption coefficient, single scattering albedo, and scattering Ångström exponent. Besides the direct measurement, the aerosol scattering coefficient was alternatively computed from experimental particle number size distributions using a Mie model. Within pre-defined limits, a closure could be achieved with the direct measurement. The achievement of closure implies that such calculations can be used as a high-level quality control measure for data sets involving multiple instrumentation. All dry-state optical properties show pronounced annual and diurnal variations, which are attributed to the corresponding variations in the regional emission fluxes, the intensity of secondary particle formation, and the mixing layer height. Air mass classification shows that atmospheric stability is a major factor influencing the dry aerosol properties at the GAW station. In the cold season, temperature inversions limit the volume available for atmospheric mixing, so that the dry-state aerosol optical properties near the ground proved quite sensitive to the geographical origin of the air mass. In the warm season, when the atmosphere is usually well-mixed during daytime, considerably less variability was observed for the optical properties between different air masses. This work provides, on the basis of quality-checked in situ measurements, a first step towards a climatological assessment of direct aerosol radiative forcing in the region under study.
  • Item
    Mercury plumes in the global upper troposphere observed during flights with the CARIBIC observatory from may 2005 until june 2013
    (Basel : MDPI, 2014) Slemr, Franz; Weigelt, Andreas; Ebinghaus, Ralf; Brenninkmeijer, Carl; Baker, Angela; Schuck, Tanja; Rauthe-Schöch, Armin; Riede, Hella; Leedham, Emma; Hermann, Markus; van Velthoven, Peter; Oram, David; O'Sullivan, Debbie; Dyroff, Christoph; Zahn, Andreas; Ziereis, Helmut
    Tropospheric sections of flights with the CARIBIC (Civil Aircraft for Regular Investigation of the Atmosphere Based on an Instrumented Container) observatory from May 2005 until June 2013, are investigated for the occurrence of plumes with elevated Hg concentrations. Additional information on CO, CO2, CH4, NOy, O3, hydrocarbons, halocarbons, acetone and acetonitrile enable us to attribute the plumes to biomass burning, urban/industrial sources or a mixture of both. Altogether, 98 pollution plumes with elevated Hg concentrations and CO mixing ratios were encountered, and the Hg/CO emission ratios for 49 of them could be calculated. Most of the plumes were found over East Asia, in the African equatorial region, over South America and over Pakistan and India. The plumes encountered over equatorial Africa and over South America originate predominantly from biomass burning, as evidenced by the low Hg/CO emission ratios and elevated mixing ratios of acetonitrile, CH3Cl and particle concentrations. The backward trajectories point to the regions around the Rift Valley and the Amazon Basin, with its outskirts, as the source areas. The plumes encountered over East Asia and over Pakistan and India are predominantly of urban/industrial origin, sometimes mixed with products of biomass/biofuel burning. Backward trajectories point mostly to source areas in China and northern India. The Hg/CO2 and Hg/CH4 emission ratios for several plumes are also presented and discussed.
  • Item
    Global annual methane emission rate derived from its current atmospheric mixing ratio and estimated lifetime
    (Göttingen : Copernicus, 2014) Sonnemann, G.R.; Grygalashvyly, M.
    We use the estimated lifetime of methane (CH4), the current methane concentration, and its annual growth rate to calculate the global methane emission rate. The upper and lower limits of the annual global methane emission rate, depending on loss of CH4 into the stratosphere and methane consuming bacteria, amounts to 648.0 Mt a-1 and 608.0 Mt a-1. These values are in reasonable agreement with satellite and with much more accurate in situ measurements of methane. We estimate a mean tropospheric and mass-weighted temperature related to the reaction rate and employ a mean OH-concentration to calculate a mean methane lifetime. The estimated atmospheric lifetime of methane amounts to 8.28 years and 8.84 years, respectively. In order to improve the analysis a realistic 3D-calculations should be performed.
  • Item
    Overview: Tropospheric profiling: State of the art and future challenges - Introduction to the AMT special issue
    (München : European Geopyhsical Union, 2014) Cimini, D.; Rizi, V.; Di Girolamo, P.; Marzano, F.S.; Macke, A.; Pappalardo, G.; Richter, A.
    This paper introduces the Atmospheric Measurement Techniques special issue on tropospheric profiling, which was conceived to host full papers presenting the results shown at the 9th International Symposium on Tropospheric Profiling (ISTP9). ISTP9 was held in L'Aquila (Italy) from 3 to 7 September 2012, bringing together 150 scientists representing of 28 countries and 3 continents. The tropospheric profiling special issue collects the highlights of ISTP9, reporting recent advances and future challenges in research and technology development.
  • Item
    Variations in tropospheric submicron particle size distributions across the European continent 2008-2009
    (München : European Geopyhsical Union, 2014) Beddows, D.C.S.; Dall'Osto, M.; Harrison, R.M.; Kulmala, M.; Asmi, A.; Wiedensohler, A.; Laj, P.; Fjaeraa, A.M.; Sellegri, K.; Birmili, W.; Bukowiecki, N.; Weingartner, E.; Baltensperger, U.; Zdimal, V.; Zikova, N.; Putaud, J.-P.; Marinoni, A.; Tunved, P.; Hansson, H.-C.; Fiebig, M.; Kivekäs, N.; Swietlicki, E.; Lihavainen, H.; Asmi, E.; Ulevicius, V.; Aalto, P.P.; Mihalopoulos, N.; Kalivitis, N.; Kalapov, I.; Kiss, G.; de Leeuw, G.; Henzing, B.; O'Dowd, C.; Jennings, S.G.; Flentje, H.; Meinhardt, F.; Ries, L.; Denier van der Gon, H.A.C.; Visschedijk, A.J.H.
    Cluster~analysis of particle number size distributions from~background sites across Europe~is presented. This generated a total of nine clusters of particle size distributions which could be further combined into two main groups, namely: a south-to-north category (four clusters) and a west-to-east category (five clusters). The first group was identified as most frequently being detected inside and around northern Germany and neighbouring countries, showing clear evidence of local afternoon nucleation and growth events that could be linked to movement of air masses from south to north arriving ultimately at the Arctic contributing to Arctic haze.~The second group of particle size spectra proved to have narrower size distributions and collectively showed a dependence of modal diameter upon the longitude of the site (west to east) at which they were most frequently detected.~These clusters indicated regional nucleation (at the coastal sites) growing to larger modes further inland. The apparent growth rate of the modal diameter was around 0.6–0.9 nm h−1. Four specific air mass back-trajectories were successively taken as case studies to examine in real time the evolution of aerosol size distributions across Europe. ~While aerosol growth processes can be observed as aerosol traverses Europe, the processes are often obscured by the addition of aerosol by emissions en route. This study revealed that some of the 24 stations exhibit more complex behaviour than others, especially when impacted by local sources or a variety of different air masses. Overall, the aerosol size distribution clustering analysis greatly simplifies the complex data set and allows a description of aerosol aging processes, which reflects the longer-term average development of particle number size distributions as air masses advect across Europe.
  • Item
    Deviations from a general nonlinear wind balance: Local and zonal-mean perspectives
    (Stuttgart : Gebrüder Bornträger Verlagsbuchhandlung, 2014) Gassmann, A.
    The paper introduces the active wind as the deviation from a general local wind balance, the inactive wind. The inactive wind is directed along intersection lines of Bernoulli function and potential temperature surfaces. In climatological steady state, the inactive mass flux cannot participate in net-mass fluxes, because the mean position of the mentioned intersection lines does not change. A conceptual proximity of the zonal-mean active wind to the residual wind as occurring in the transformed Eulerian mean equations suggests itself. The zonaland time-mean active wind is compared to the residual wind for the Held-Suarez test case. Similarities occur for the meridional components in the zone of Rossby wave breaking in the upper troposphere equatorward of the jet. The vertical components are similar, too. However, the vertical active wind is much stronger in the baroclinic zone. This is due to the missing vertical eddy flux of Ertel's potential vorticity (EPV) in the TEM equations. The largest differences are to be found in the boundary layer, where the active wind exhibits typical pattern of Ekman dynamics. Instantaneous active wind vectors demonstrate mass-inflow for lows and mass-outflow for highs in the boundary layer. An active meridional wind is associated with a filamentation of EPV in the zone of Rossby wave breaking in about 300 hPa. Strong gradients of EPV act as a transport barrier.