Search Results

Now showing 1 - 2 of 2
  • Item
    Cardio-respiratory coordination increases during sleep apnea
    (San Francisco, CA : Public Library of Science (PLoS), 2014) Riedl, M.; Müller, A.; Kraemer, J.F.; Penzel, T.; Kurths, J.; Wessel, N.
    Cardiovascular diseases are the main source of morbidity and mortality in the United States with costs of more than $170 billion. Repetitive respiratory disorders during sleep are assumed to be a major cause of these diseases. Therefore, the understanding of the cardio-respiratory regulation during these events is of high public interest. One of the governing mechanisms is the mutual influence of the cardiac and respiratory oscillations on their respective onsets, the cardiorespiratory coordination (CRC). We analyze this mechanism based on nocturnal measurements of 27 males suffering from obstructive sleep apnea syndrome. Here we find, by using an advanced analysis technique, the coordigram, not only that the occurrence of CRC is significantly more frequent during respiratory sleep disturbances than in normal respiration (p-value<10-51) but also more frequent after these events (p-value<10-15). Especially, the latter finding contradicts the common assumption that spontaneous CRC can only be observed in epochs of relaxed conditions, while our newly discovered epochs of CRC after disturbances are characterized by high autonomic stress. Our findings on the connection between CRC and the appearance of sleep-disordered events require a substantial extension of the current understanding of obstructive sleep apneas and hypopneas.
  • Item
    Insulin adsorption to catheter materials used for intensive insulin therapy in critically ill patients: Polyethylene versus polyurethane - possible cause of variation in glucose control?
    (Sharjah : Bentham Science Publishers B.V., 2014) Ley, S.C.; Ammann, J.; Herder, C.; Dickhaus, T.; Hartmann, M.; Kindgen-Milles, D.
    Introduction: Restoring and maintaining normoglycemia by intensified insulin therapy in critically ill patients is a matter of ongoing debate since the risk of hypoglycemia may outweigh positive effects on morbidity and mortality. In this context, adsorption of insulin to different catheter materials may contribute to instability of glucose control. We studied the adsorption of insulin to different tubing materials in vitro and the effects on glycemic control in vivo. Materials and Methods: In vitro experiments: A syringe pump was filled with 50 IU insulin diluted to 50 ml saline. A flow of 2 ml/h was perfused through polyethylene (PET) or polyurethane (PUR) tubing. Insulin concentrations were measured at the end of the tube for 24 hours using Bradford's protein assay. In vivo study: In a randomized double-blinded cross-over design, 10 intensive care patients received insulin via PET and PUR tubes for 24 hours each, targeting blood glucose levels of 80-150 mg/dl. We measured blood glucose levels, the insulin dose required to maintain target levels, and serum insulin and C-peptide levels. Results: In vitro experiments: After the start of the insulin infusion, only 20% (median, IQR 20-27) (PET) and 22% (IQR 16-27) (PUR) of the prepared insulin concentration were measured at the end of the 2 meter tubing. Using PET, after one hour infusion the concentration increased to 34% (IQR 29-36) and did not increase significantly during the next 24 hours (39% (IQR 39-40)). Using PUR, higher concentrations were detected than for PET at every measurement from 1 hour (82% (IQR 70-86)) to 24 hours (79% (IQR 64-87)). In vivo study: Glycemic control was effective and not different between groups. Significantly higher volumes of insulin solution had to be infused with PET compared to PUR (median PET 70.0 (IQR 56-82) ml vs. PUR 42 (IQR 31-63) ml; p=0.0015). Serum insulin concentrations did not decrease significantly one hour after changing to PET or PUR tubing. Conclusion: Polyurethane tubing systems allow application of insulin with significantly lower adsorption rates than polyethylene tubing systems. As a consequence, less insulin solution has to be infused to patients for effective blood glucose control. Tubing material of the insulin infusion may be crucial for safe and effective glycemic control in critically ill patients.