Search Results

Now showing 1 - 6 of 6
  • Item
    Proteome-wide analysis reveals an age-associated cellular phenotype of in situ aged human fibroblasts
    (Orchard Park : Impact Journals, 2014) Waldera-Lupa, Daniel M.; Kalfalah, Faiza; Florea, Ana-Maria; Sass, Steffen; Kruse, Fabian; Rieder, Vera; Tigges, Julia; Fritsche, Ellen; Krutmann, Jean; Busch, Hauke; Boerries, Melanie; Meyer, Helmut E.; Boege, Fritz; Theis, Fabian; Reifenberger, Guido; StĂ¼hle, Kai
    We analyzed an ex vivo model of in situ aged human dermal fibroblasts, obtained from 15 adult healthy donors from three different age groups using an unbiased quantitative proteome-wide approach applying label-free mass spectrometry. Thereby, we identified 2409 proteins, including 43 proteins with an age-associated abundance change. Most of the differentially abundant proteins have not been described in the context of fibroblasts' aging before, but the deduced biological processes confirmed known hallmarks of aging and led to a consistent picture of eight biological categories involved in fibroblast aging, namely proteostasis, cell cycle and proliferation, development and differentiation, cell death, cell organization and cytoskeleton, response to stress, cell communication and signal transduction, as well as RNA metabolism and translation. The exhaustive analysis of protein and mRNA data revealed that 77 % of the age-associated proteins were not linked to expression changes of the corresponding transcripts. This is in line with an associated miRNA study and led us to the conclusion that most of the age-associated alterations detected at the proteome level are likely caused post-transcriptionally rather than by differential gene expression. In summary, our findings led to the characterization of novel proteins potentially associated with fibroblast aging and revealed that primary cultures of in situ aged fibroblasts are characterized by moderate age-related proteomic changes comprising the multifactorial process of aging.
  • Item
    Regulation of the tumor-suppressor function of the class III phosphatidylinositol 3-kinase complex by ubiquitin and SUMO
    (Basel : MDPI, 2014) Reidick, Christina; El Magraoui, Fouzi; Meyer, Helmut E.; Stenmark, Harald; Platta, Harald W.
    The occurrence of cancer is often associated with a dysfunction in one of the three central membrane-involution processes—autophagy, endocytosis or cytokinesis. Interestingly, all three pathways are controlled by the same central signaling module: the class III phosphatidylinositol 3-kinase (PI3K-III) complex and its catalytic product, the phosphorylated lipid phosphatidylinositol 3-phosphate (PtdIns3P). The activity of the catalytic subunit of the PI3K-III complex, the lipid-kinase VPS34, requires the presence of the membrane-targeting factor VPS15 as well as the adaptor protein Beclin 1. Furthermore, a growing list of regulatory proteins associates with VPS34 via Beclin 1. These accessory factors define distinct subunit compositions and thereby guide the PI3K-III complex to its different cellular and physiological roles. Here we discuss the regulation of the PI3K-III complex components by ubiquitination and SUMOylation. Especially Beclin 1 has emerged as a highly regulated protein, which can be modified with Lys11-, Lys48- or Lys63-linked polyubiquitin chains catalyzed by distinct E3 ligases from the RING-, HECT-, RBR- or Cullin-type. We also point out other cross-links of these ligases with autophagy in order to discuss how these data might be merged into a general concept.
  • Item
    Proteome analyses of hepatocellular carcinoma
    (Sugar Land, TX : Xia & He Publishing, 2014) Megger, Dominik A.; Naboulsi, Naboulsi; Meyer, Helmut E.; Sitek, Barbara
    Proteomics has evolved into a powerful and widely used bioanalytical technique in the study of cancer, especially hepatocellular carcinoma (HCC). In this review, we provide an up to date overview of feasible proteome-analytical techniques for clinical questions. In addition, we present a broad summary of proteomic studies of HCC utilizing various technical approaches for the analysis of samples derived from diverse sources like HCC cell lines, animal models, human tissue and body fluids.
  • Item
    Highly immunoreactive IgG antibodies directed against a set of twenty human proteins in the sera of patients with amyotrophic lateral sclerosis identified by protein array
    (San Francisco, CA : Public Library of Science, 2014) May, Caroline; Nordhoff, Eckhard; Casjens, Swaantje; Turewicz, Michael; Eisenacher, Martin; Gold, Ralf; BrĂ¼ning, Thomas; Pesch, Beate; Stephan, Christian; Woitalla, Dirk; Penke, Botond; JanĂ¡ky, TamĂ¡s; VirĂ³k, DezsÅ‘; SiklĂ³s, LĂ¡szlĂ³; Engelhardt, Jozsef I.; Meyer, Helmut E.
    Amyotrophic lateral sclerosis (ALS), the most common adult-onset motor neuron disorder, is characterized by the progressive and selective loss of upper and lower motor neurons. Diagnosis of this disorder is based on clinical assessment, and the average survival time is less than 3 years. Injections of IgG from ALS patients into mice are known to specifically mark motor neurons. Moreover, IgG has been found in upper and lower motor neurons in ALS patients. These results led us to perform a case-control study using human protein microarrays to identify the antibody profiles of serum samples from 20 ALS patients and 20 healthy controls. We demonstrated high levels of 20 IgG antibodies that distinguished the patients from the controls. These findings suggest that a panel of antibodies may serve as a potential diagnostic biomarker for ALS.
  • Item
    The cytosolic domain of Pex22p stimulates the Pex4p-dependent ubiquitination of the PTS1-receptor
    (San Francisco, CA : Public Library of Science, 2014) El Magraoui, Fouzi; Schrötter, Andreas; Brinkmeier, Rebecca; Kunst, Lena; Mastalski, Thomas; MĂ¼ller, Thorsten; Marcus, Katrin; Meyer, Helmut E.; Girzalsky, Wolfgang; Erdmann, Ralf; Platta, Harald W.
    Peroxisomal biogenesis is an ubiquitin-dependent process because the receptors required for the import of peroxisomal matrix proteins are controlled via their ubiquitination status. A key step is the monoubiquitination of the import receptor Pex5p by the ubiquitin-conjugating enzyme (E2) Pex4p. This monoubiquitination is supposed to take place after Pex5p has released the cargo into the peroxisomal matrix and primes Pex5p for the extraction from the membrane by the mechano-enzymes Pex1p/Pex6p. These two AAA-type ATPases export Pex5p back to the cytosol for further rounds of matrix protein import. Recently, it has been reported that the soluble Pex4p requires the interaction to its peroxisomal membrane-anchor Pex22p to display full activity. Here we demonstrate that the soluble C-terminal domain of Pex22p harbours its biological activity and that this activity is independent from its function as membrane-anchor of Pex4p. We show that Pex4p can be functionally fused to the trans-membrane segment of the membrane protein Pex3p, which is not directly involved in Pex5p-ubiquitination and matrix protein import. However, this Pex3(N)-Pex4p chimera can only complement the double-deletion strain pex4Δ/pex22Δ and ensure optimal Pex5p-ubiquitination when the C-terminal part of Pex22p is additionally expressed in the cell. Thus, while the membrane-bound portion Pex22(N)p is not required when Pex4p is fused to Pex3(N)p, the soluble Pex22(C)p is essential for peroxisomal biogenesis and efficient monoubiquitination of the import receptor Pex5p by the E3-ligase Pex12p in vivo and in vitro. The results merge into a picture of an ubiquitin-conjugating complex at the peroxisomal membrane consisting of three domains: the ubiquitin-conjugating domain (Pex4p), a membrane-anchor domain (Pex22(N)p) and an enhancing domain (Pex22(C)p), with the membrane-anchor domain being mutually exchangeable, while the Ubc- and enhancer-domains are essential.
  • Item
    Proteomic insights into non-small cell lung cancer: New ideas for cancer diagnosis and therapy from a functional viewpoint
    (Amsterdam : Elsevier, 2014) Linxweiler, Johannes; Kollipara, Laxmikanth; Zahedi, René P.; Lampel, Pavel; Zimmermann, Richard; Greiner, Markus
    We recently characterized SEC62 as an oncogene in non-small-cell lung cancer (NSCLC). Here we aimed to gain further insight into the molecular mechanisms of the cancer-related functions of this oncogene. We performed 2D-DIGE proteome analysis of tumor material from patients with NSCLC and of HEK293 cells stably overexpressing plasmid-encoded SEC62, combined with investigation of the Sec62 interactome. Furthermore, we analyzed the proteomic effects of siRNA-mediated depletion of the Sec62-interacting protein Sec63. We identified a comprehensive list of differentially regulated proteins, providing new insights into the molecular mechanisms of the cancer-related functions of Sec62 in cell migration, drug resistance, and Ca2+-homeostasis.