Search Results

Now showing 1 - 3 of 3
  • Item
    Ultracompact three-dimensional tubular conductivity microsensors for ionic and biosensing applications
    (Washington, DC : American Chemical Society, 2014) Martinez-Cisneros, C.S.; Sanchez, S.; Xi, W.; Schmidt, O.G.
    We present ultracompact three-dimensional tubular structures integrating Au-based electrodes as impedimetric microsensors for the in-flow determination of mono- and divalent ionic species and HeLa cells. The microsensors show an improved performance of 2 orders of magnitude (limit of detection = 0.1 nM for KCl) compared to conventional planar conductivity detection systems integrated in microfluidic platforms and the capability to detect single HeLa cells in flowing phosphate buffered saline. These highly integrated conductivity tubular sensors thus open new possibilities for lab-in-a-tube devices for bioapplications such as biosensing and bioelectronics.
  • Item
    Magnetofluidic platform for multidimensional magnetic and optical barcoding of droplets
    (Cambridge : RSC, 2014) Lin, Gungun; Makarov, Denys; Medina-Sánchez, Mariana; Guix, Maria; Baraban, Larysa; Cuniberti, Gianaurelio; Schmidt, Oliver G.
    We present a concept of multidimensional magnetic and optical barcoding of droplets based on a magnetofluidic platform. The platform comprises multiple functional areas, such as an encoding area, an encoded droplet pool and a magnetic decoding area with integrated giant magnetoresistive (GMR) sensors. To prove this concept, penicillin functionalized with fluorescent dyes is coencapsulated with magnetic nanoparticles into droplets. While fluorescent dyes are used as conventional optical barcodes which are decoded with an optical decoding setup, an additional dimensionality of barcodes is created by using magnetic nanoparticles as magnetic barcodes for individual droplets and integrated micro-patterned GMR sensors as the corresponding magnetic decoding devices. The strategy of incorporating a magnetic encoding scheme provides a dynamic range of ~40 dB in addition to that of the optical method. When combined with magnetic barcodes, the encoding capacity can be increased by more than 1 order of magnitude compared with using only optical barcodes, that is, the magnetic platform provides more than 10 unique magnetic codes in addition to each optical barcode. Besides being a unique magnetic functional element for droplet microfluidics, the platform is capable of on-demand facile magnetic encoding and real-time decoding of droplets which paves the way for the development of novel non-optical encoding schemes for highly multiplexed droplet-based biological assays.
  • Item
    Rolled-up functionalized nanomembranes as three-dimensional cavities for single cell studies
    (Washington, DC : American Chemical Society, 2014) Xi, W.; Schmidt, C.K.; Sanchez, S.; Gracias, D.H.; Carazo-Salas, R.E.; Jackson, S.P.; Schmidt, O.G.
    We use micropatterning and strain engineering to encapsulate single living mammalian cells into transparent tubular architectures consisting of three-dimensional (3D) rolled-up nanomembranes. By using optical microscopy, we demonstrate that these structures are suitable for the scrutiny of cellular dynamics within confined 3D-microenvironments. We show that spatial confinement of mitotic mammalian cells inside tubular architectures can perturb metaphase plate formation, delay mitotic progression, and cause chromosomal instability in both a transformed and nontransformed human cell line. These findings could provide important clues into how spatial constraints dictate cellular behavior and function.