Search Results

Now showing 1 - 10 of 40
  • Item
    Zeitaufgelöste PIV-Untersuchungen zur Strömungskontrolle mittels elektromagnetischer Kräfte in schwach leitfähigen Fluiden
    (Dresden : Forschungszentrum Dresden-Rossendorf, 2009) Cierpka, Christian
    [no abstract available]
  • Item
    Advanced transmission electron microscopy investigation of nano-clustering in Gd-doped GaN
    (Berlin : Humboldt-Universität zu Berlin, 2014) Wu, Mingjian
    The central goal of this dissertation is (1) to clarify the distribution of Gd atoms in GaN:Gd with Gd concentration in the range between 10^16–10^19 cm^-3 by means of advanced (scanning) transmission electron microscopy [(S)TEM]; and based on that, (2) to understand the mechanisms that control such distribution. We discuss in detail the application and limitations of (S)TEM imaging and analysis techniques and modeling methods dedicated to the study of embedded nano-clusters. Besides, two case studies of semiconductor material systems that contain apparently observable nano-clusters are considered. One is about intentionally grown InAs nano-clusters embedded in Si and the other study the formation and phase transformation of Bi-containing clusters in annealed GaAsBi epilayers. Finally, we are able to identify the occurrence of GdN clusters in GaN:Gd samples and to determine their atomic structure. Strain contrast imaging in conjunction with contrast simulation unambiguously identifies the occurrence of small, platelet-shaped GdN clusters. These clusters are nearly uniform in size with their broader face parallel to the GaN (0001) basal plane. The result is confirmed by dark-field STEM Z-contrast imaging. The strong local lattice distortion (displacement field) induced by the clusters is recorded by HRTEM images and quantitatively analyzed. By comparing the displacement fields which are analyzed experimentally with these fields that are derived from energetically favored models, we conclude that the clusters are bilayer GdN with platelet diameter of only few Gd atoms; their internal structure is close to rocksalt GdN. This atomic structure model enables our discussion about the energetics of the clusters. The results indicate that the driving force for the formation of observed platelet in specific size is a compromise between the gain in cohesive energy and the penalty from interfacial strain energy due to lattice mismatch between the GdN cluster and GaN host.
  • Item
    Development of terahertz quantum-cascade lasers as sources for heterodyne receivers
    (Berlin : Humboldt-Universität zu Berlin, 2012) Wienold, Martin
    This thesis presents the development and optimization of terahertz quantum-cascade lasers (THz QCLs) as sources for heterodyne receivers. A particular focus is on single-mode emitters for the heterodyne detection of the important astronomic oxygen (OI) line at 4.75 THz. Various active-region designs are investigated. High-output-power THz QCLs with low operating voltages and emission around 3 THz are obtained for an active region, which involves phonon-assisted intersubband transitions. While these QCLs are based on a GaAs/Al_xGa_(1-x)As heterostructure with x=0.15, similar heterostructures with x=0.25 allowed for very low threshold current densities. By successive modifications of the active-region design, THz QCLs have been optimized toward the desired frequency at 4.75 THz. To obtain single-mode operation, first-order lateral distributed-feedback (DFB) gratings are investigated. It shows that such gratings allow for single-mode operation in combination with high continuous-wave (cw) output powers. A general method is presented to calculate the coupling coefficients of lateral gratings. In conjunction with this method, the lasers are well described by the coupled-mode theory of DFB lasers with two reflective end facets. Single-mode operation within the specified frequency bands at 4.75 THz is demonstrated. Stable operation of THz QCLs is often in conflict with the occurrence of a negative differential resistance (NDR) regime at elevated field strengths and the formation of electric-field domains (EFDs). Stationary EFDs are shown to be related to discontinuities in the cw light-current-voltage characteristics, while non-stationary EFDs are related to current self-oscillations and cause a temporal modulation of the output power. To model such effects, the nonlinear transport equations of weakly coupled superlattices are adopted for QCLs by introducing an effective drift velocity-field relation. Zugriffsstatistik:
  • Item
    An investigation of target poisoning during reactive magnetron sputtering
    (Dresden : Forschungszentrum Dresden-Rossendorf, 2009) Güttler, Dominik
    [no abstract available]
  • Item
    Integration der Positronen-Emissions-Tomographie in die Strahlentherapie mit hochenergetischen Photonen
    (Dresden : Forschungszentrum Dresden-Rossendorf, 2009) Kunath, Daniela
    [no abstract available]
  • Item
    Echtzeit-in-situ-Messung der Oberflächenbelegung einer Magnetron-Kathode bei der reaktiven Sputter-Abscheidung
    (Dresden : Forschungszentrum Dresden-Rossendorf, 2004) Güttler, Dominik
    [no abstract available]
  • Item
    Study of [Lambda] hyperon production in C+C collisions at 2 AGeV beam energy with the HADES spectrometer
    (Dresden : Forschungszentrum Dresden-Rossendorf, 2007) Kanaki, Kalliopi
    [no abstract available]
  • Item
    Messung des Wirkungsquerschnitts astrophysikalisch relevanter Kernreaktionen
    (Dresden : Forschungszentrum Dresden-Rossendorf, 2009) Trompler, Erik
    [no abstract available]
  • Item
    Investigation and comparison of GaN nanowire nucleation and growth by the catalyst-assisted and self-induced approaches
    (Berlin : Humboldt-Universität zu Berlin, 2010) Chèze, Caroline
    This work focuses on the nucleation and growth mechanisms of GaN nanowires (NWs) by molecular beam epitaxy (MBE). The main novelties of this study are the intensive employment of in-situ techniques and the direct comparison of self-induced and catalyst-induced NWs. On silicon substrates, GaN NWs form in MBE without the use of any external catalyst seed. On sapphire, in contrast, NWs grow under identical conditions only in the presence of Ni seeds. The processes leading to NW nucleation are fundamentally different for both approaches. In the catalyst-assisted approach, Ga strongly reacts with the catalyst Ni particles whose crystal structure and phases are decisive for the NW growth, while in the catalyst-free approach, N forms an interfacial layer with Si before the intense nucleation of GaN starts. Both approaches yield monocrystalline wurtzite GaN NWs, which grow in the Ga-polar direction. However, the catalyst-assisted NWs are longer than the catalyst-free ones after growth under identical conditions, and they contain many stacking faults. By comparison the catalyst-free NWs are largely free of defects and their photoluminescence is much more intense than the one of the catalyst-assisted NWs. All of these differences can be explained as effects of the catalyst. The seed captures Ga atoms arriving at the NW tip more efficiently than the bare top facet in the catalyst-free approach. In addition, stacking faults could result from both the presence of the additional solid phase constituted by the catalyst-particles and the contamination of the NWs by the catalyst material. Finally, such contamination would generate non-radiative recombination centers. Thus, the use of catalyst seeds may offer an additional way to control the growth of NWs, but both the structural and the optical material quality of catalyst-free NWs are superior.
  • Item
    Crystallization of nanoscaled colloids
    (Saarbrücken : Saarländische Universitäts- und Landesbibliothek, 2012) Born, Philip
    Colloidal crystals can exhibit novel properties arising from the combination of particle properties and collective phenomena of particle packings. Particular colloidal crystals composed of nanoparticles are interesting, because of the unique properties of nanoscale objects, and because of the formation of three-dimensional structures on scales that can be manufactured using established methods only with great technical effort. The aim of this work was to develop appropriate ways to produce the crystals. Two approaches were chosen. In the first approach, colloid particles were deposited on surfaces in a process similar to dip coating. Large-area crystalline particle films with low defect density were obtained by an optimized deposition geometry. In the second approach attractive interactions between particles were used. Reducing the thermal energy induced agglomeration of the particles. This approach allowed production of a variety of particle structures. Besides the expected result, formation of hexagonal particle packings, unexpected results were obtained. In the first approach a superposition of two crystallization mechanisms ensured a robust formation of hexagonal particle packings. In the second approach crystallization among the particles was suppressed in a pure thermally induced agglomeration.