Search Results

Now showing 1 - 10 of 65
  • Item
    Towards on-site testing of Phytophthora species
    (Cambridge : RSC Publ., 2014) Schwenkbier, Lydia; Pollok, Sibyll; König, Stephan; Urban, Matthias; Werres, Sabine; Cialla-May, Dana; Weber, Karina; Popp, Jürgen
    Rapid detection and accurate identification of plant pathogens in the field is an ongoing challenge. In this study, we report for the first time on the development of a helicase-dependent isothermal amplification (HDA) in combination with on-chip hybridization for the detection of selected Phytophthora species. The HDA approach allows efficient amplification of the yeast GTP-binding protein (Ypt1) target gene region at one constant temperature in a miniaturized heating device. The assay's specificity was determined by on-chip DNA hybridization and subsequent silver nanoparticle deposition. The silver deposits serve as stable endpoint signals that enable the visual as well as the electrical readout. Our promising results point to the direction of a near future on-site application of the combined techniques for a reliable detection of Phytophthora species.
  • Item
    Distinction of nucleobases - A tip-enhanced Raman approach
    (Frankfurt, M. : Beilstein-Institut zur Förderung der Chemischen Wissenschaften, 2011) Treffer, R.; Lin, X.; Bailo, E.; Deckert-Gaudig, T.; Deckert, V.
    The development of novel DNA sequencing methods is one of the ongoing challenges in various fields of research seeking to address the demand for sequence information. However, many of these techniques rely on some kind of labeling or amplification steps. Here we investigate the intrinsic properties of tip-enhanced Raman scattering (TERS) towards the development of a novel, label-free, direct sequencing method. It is known that TERS allows the acquisition of spectral information with high lateral resolution and single-molecule sensitivity. In the presented experiments, single stranded adenine and uracil homopolymers were immobilized on different kinds of substrates (mica and gold nanoplates) and TERS experiments were conducted, which demonstrated the reproducibility of the technique. To elucidate the signal contributions from the specific nucleobases, TERS spectra were collected on single stranded calf thymus DNA with arbitrary sequence. The results show that, while the Raman signals with respect to the four nucleobases differ remarkably, specific markers can be determined for each respective base. The combination of sensitivity and reproducibility shows that the crucial demands for a sequencing procedure are met.
  • Item
    Towards multiple readout application of plasmonic arrays
    (Frankfurt, M. : Beilstein-Institut zur Förderung der Chemischen Wissenschaften, 2011) Cialla, D.; Weber, K.; Böhme, R.; Hübner, U.; Schneidewind, H.; Zeisberger, M.; Mattheis, R.; Möller, R.; Popp, J.
    In order to combine the advantages of fluorescence and surface-enhanced Raman spectroscopy (SERS) on the same chip platform, a nanostructured gold surface with a unique design, allowing both the sensitive detection of fluorescence light together with the specific Raman fingerprint of the fluorescent molecules, was established. This task requires the fabrication of plasmonic arrays that permit the binding of molecules of interest at different distances from the metallic surface. The most efficient SERS enhancement is achieved for molecules directly adsorbed on the metallic surface due to the strong field enhancement, but where, however, the fluorescence is quenched most efficiently. Furthermore, the fluorescence can be enhanced efficiently by careful adjustment of the optical behavior of the plasmonic arrays. In this article, the simultaneous application of SERS and fluorescence, through the use of various gold nanostructured arrays, is demonstrated by the realization of a DNA detection scheme. The results shown open the way to more flexible use of plasmonic arrays in bioanalytics.
  • Item
    Modified bibenzimidazole ligands as spectator ligands in photoactive molecular functional Ru-polypyridine units? Implications from spectroscopy
    (Cambridge : RSC, 2014) Meyer-Ilse, J.; Bauroth, S.; Bräutigam, M.; Schmitt, M.; Popp, J.; Beckert, R.; Rockstroh, N.; Pilz, T.D.; Monczak, K.; Heinemann, F.W.; Rau, S.; Dietzek, B.
    The photophysical properties of Ruthenium-bipyridine complexes bearing a bibenzimidazole ligand were investigated. The nitrogens on the bibenzimidazole-ligand were protected, by adding either a phenylene group or a 1,2-ethandiyl group, to remove the photophysical dependence of the complex on the protonation state of the bibenzimidazole ligand. This protection results in the bibenzimidazole ligand contributing to the MLCT transition, which is experimentally evidenced by (resonance) Raman scattering in concert with DFT calculations for a detailed mode assignment in the (resonance) Raman spectra.
  • Item
    Ruthenium(II)-bis(4'-(4-ethynylphenyl)-2,2':6', 2''-terpyridine) - A versatile synthon in supramolecular chemistry. Synthesis and characterization
    (Warsaw : Central European Science Journals, 2011) Siebert, R.; Schlütter, F.; Winter, A.; Presselt, M.; Görls, H.; Schubert, U.S.; Dietzek, B.; Popp, J.
    A homoleptic ethynyl-substituted ruthenium(II)-bisterpyridine complex representing a versatile synthon in supramolecular chemistry was synthesized and analyzed by NMR spectroscopy, mass spectrometry and X-ray diffractometry. Furthermore, its photophysical properties were detailed by UV/Vis absorption, emission and resonance Raman spectroscopy. In order to place the results obtained in the context of the vast family of ruthenium coordination compounds, two structurally related complexes were investigated accordingly. These reference compounds bear either no or an increased chromophore in the 4Ì€-position. The spectroscopic investigations reveal a systematic bathochromic shift of the absorption and emission maximum upon increasing chromophore size. This bathochromic shift of the steady state spectra occurs hand in hand with increasing resonance Raman intensities upon excitation of the metal-to-ligand charge-transfer transition. The latter feature is accompanied by an increased excitation delocalization over the chromophore in the 4Ì€-position of the terpyridine. Thus, the results presented allow for a detailed investigation of the electronic effects of the ethynyl substituent on the metal-to-ligand charge-transfer states in the synthon for click reactions leading to coordination polymers.
  • Item
    Modified powder-in-tube technique based on the consolidation processing of powder materials for fabricating specialty optical fibers
    (Basel : MDPI AG, 2014) Auguste, J.-L.; Humbert, G.; Leparmentier, S.; Kudinova, M.; Martin, P.-O.; Delaizir, G.; Schuster, K.; Litzkendorf, D.
    The objective of this paper is to demonstrate the interest of a consolidation process associated with the powder-in-tube technique in order to fabricate a long length of specialty optical fibers. This so-called Modified Powder-in-Tube (MPIT) process is very flexible and paves the way to multimaterial optical fiber fabrications with different core and cladding glassy materials. Another feature of this technique lies in the sintering of the preform under reducing or oxidizing atmosphere. The fabrication of such optical fibers implies different constraints that we have to deal with, namely chemical species diffusion or mechanical stress due to the mismatches between thermal expansion coefficients and working temperatures of the fiber materials. This paper focuses on preliminary results obtained with a lanthano-aluminosilicate glass used as the core material for the fabrication of all-glass fibers or specialty Photonic Crystal Fibers (PCFs). To complete the panel of original microstructures now available by the MPIT technique, we also present several optical fibers in which metallic particles or microwires are included into a silica-based matrix.
  • Item
    Dynamics of droplet formation at T-shaped nozzles with elastic feed lines
    (Heidelberg : Springer, 2010) Malsch, D.; Gleichmann, N.; Kielpinski, M.; Mayer, G.; Henkel, T.; Mueller, D.; Van Steijn, V.; Kleijn, C.R.; Kreutzer, M.T.
    We describe the formation of water in oil droplets, which are commonly used in lab-on-a-chip systems for sample generation and dosing, at microfluidic T-shaped nozzles from elastic feed lines. A narrow nozzle forms a barrier for a liquid-liquid interface, such that pressure can build up behind the nozzle up to a critical pressure. Above this critical pressure, the liquid bursts into the main channel. Build-up of pressure is possible when the fluid before the nozzle is compressible or when the channel that leads to the nozzle is elastic. We explore the value of the critical pressure and the time required to achieve it. We describe the fluid flow of the sudden burst, globally in terms of flow rate into the channel and spatially resolved in terms of flow fields measured using micro-PIV. A total of three different stages-the lag phase, a spill out phase, and a linear growth phase-can be clearly discriminated during droplet formation. The lag time linearly scales with the curvature of the interface inside the nozzle and is inversly proportional to the flow rate of the dispersed phase. A complete overview of the evolution of the growth of droplets and the internal flow structure is provided in the digital supplement. © The Author(s) 2009.
  • Item
    Diffusion and interface effects during preparation of all-solid microstructured fibers
    (Basel : MDPI AG, 2014) Kobelke, J.; Bierlich, J.; Wondraczek, K.; Aichele, C.; Pan, Z.; Unger, S.; Schuster, K.; Bartelt, H.
    All-solid microstructured optical fibers (MOF) allow the realization of very flexible optical waveguide designs. They are prepared by stacking of doped silica rods or canes in complex arrangements. Typical dopants in silica matrices are germanium and phosphorus to increase the refractive index (RI), or boron and fluorine to decrease the RI. However, the direct interface contact of stacking elements often causes interrelated chemical reactions or evaporation during thermal processing. The obtained fiber structures after the final drawing step thus tend to deviate from the targeted structure risking degrading their favored optical functionality. Dopant profiles and design parameters(e.g., the RI homogeneity of the cladding) are controlled by the combination of diffusion and equilibrium conditions of evaporation reactions. We show simulation results of diffusion and thermal dissociation in germanium and fluorine doped silica rod arrangements according to the monitored geometrical disturbances in stretched canes or drawn fibers. The paper indicates geometrical limits of dopant structures in sub-μm-level depending on the dopant concentration and the thermal conditions during the drawing process. The presented results thus enable an optimized planning of the preform parameters avoiding unwanted alterations in dopant concentration profiles or in design parameters encountered during the drawing process.
  • Item
    Multimodal nonlinear imaging of atherosclerotic plaques differentiation of triglyceride and cholesterol deposits
    (Singapore [u.a.] : World Scientific Publishing, 2014) Matthäus, C.; Cicchi, R.; Meyer, T.; Lattermann, A.; Schmitt, M.; Romeike, B.F.M.; Krafft, C.; Dietzek, B.; Brehm, B.R.; Pavone, F.S.; Popp, J.
    Cardiovascular diseases in general and atherothrombosis as the most common of its individual disease entities is the leading cause of death in the developed countries. Therefore, visualization and characterization of inner arterial plaque composition is of vital diagnostic interest, especially for the early recognition of vulnerable plaques. Established clinical techniques provide valuable morphological information but cannot deliver information about the chemical composition of individual plaques. Therefore, spectroscopic imaging techniques have recently drawn considerable attention. Based on the spectroscopic properties of the individual plaque components, as for instance different types of lipids, the composition of atherosclerotic plaques can be analyzed qualitatively as well as quantitatively. Here, we compare the feasibility of multimodal nonlinear imaging combining two-photon fluorescence (TPF), coherent anti-Stokes Raman scattering (CARS) and second-harmonic generation (SHG) microscopy to contrast composition and morphology of lipid deposits against the surrounding matrix of connective tissue with diffraction limited spatial resolution. In this contribution, the spatial distribution of major constituents of the arterial wall and atherosclerotic plaques like elastin, collagen, triglycerides and cholesterol can be simultaneously visualized by a combination of nonlinear imaging methods, providing a powerful label-free complement to standard histopathological methods with great potential for in vivo application.
  • Item
    Nanowire-supported plasmonic waveguide for remote excitation of surface-enhanced Raman scattering
    (London : Nature Publishing Group, 2014) Huang, Y.; Fang, Y.; Zhang, Z.; Zhu, L.; Sun, M.
    Due to its amazing ability to manipulate light at the nanoscale, plasmonics has become one of the most interesting topics in the field of light-matter interaction. As a promising application of plasmonics, surface-enhanced Raman scattering (SERS) has been widely used in scientific investigations and material analysis. The large enhanced Raman signals are mainly caused by the extremely enhanced electromagnetic field that results from localized surface plasmon polaritons. Recently, a novel SERS technology called remote SERS has been reported, combining both localized surface plasmon polaritons and propagating surface plasmon polaritons (PSPPs, or called plasmonic waveguide), which may be found in prominent applications in special circumstances compared to traditional local SERS. In this article, we review the mechanism of remote SERS and its development since it was first reported in 2009. Various remote metal systems based on plasmonic waveguides, such as nanoparticle-nanowire systems, single nanowire systems, crossed nanowire systems and nanowire dimer systems, are introduced, and recent novel applications, such as sensors, plasmon-driven surface-catalyzed reactions and Raman optical activity, are also presented. Furthermore, studies of remote SERS in dielectric and organic systems based on dielectric waveguides remind us that this useful technology has additional, tremendous application prospects that have not been realized in metal systems.