Search Results

Now showing 1 - 10 of 706
  • Item
    A boundary control problem for the pure Cahn–Hilliard equation with dynamic boundary conditions
    (Berlin ; Boston, Mass. : de Gruyter, 2015) Colli, Pierluigi; Gilardi, Gianni; Sprekels, Jürgen
    A boundary control problem for the pure Cahn–Hilliard equations with possibly singular potentialsand dynamic boundary conditions is studied and rst-order necessary conditions for optimality are proved.
  • Item
    Prevention and trust evaluation scheme based on interpersonal relationships for large-scale peer-to-peer networks
    (New York, NY : Hindawi Publishing Corporation, 2014) Li, L.; Kurths, J.; Yang, Y.; Liu, G.
    In recent years, the complex network as the frontier of complex system has received more and more attention. Peer-to-peer (P2P) networks with openness, anonymity, and dynamic nature are vulnerable and are easily attacked by peers with malicious behaviors. Building trusted relationships among peers in a large-scale distributed P2P system is a fundamental and challenging research topic. Based on interpersonal relationships among peers of large-scale P2P networks, we present prevention and trust evaluation scheme, called IRTrust. The framework incorporates a strategy of identity authentication and a global trust of peers to improve the ability of resisting the malicious behaviors. It uses the quality of service (QoS), quality of recommendation (QoR), and comprehensive risk factor to evaluate the trustworthiness of a peer, which is applicable for large-scale unstructured P2P networks. The proposed IRTrust can defend against several kinds of malicious attacks, such as simple malicious attacks, collusive attacks, strategic attacks, and sybil attacks. Our simulation results show that the proposed scheme provides greater accuracy and stronger resistance compared with existing global trust schemes. The proposed scheme has potential application in secure P2P network coding.
  • Item
    Analysis, simulation and prediction of multivariate random fields with package randomfields
    (Los Angeles, Calif. : UCLA, Dept. of Statistics, 2015) Schlather, Martin; Malinowski, Alexander; Menck, Peter J.; Oesting, Marco; Strokorb, Kirstin
    Modeling of and inference on multivariate data that have been measured in space, such as temperature and pressure, are challenging tasks in environmental sciences, physics and materials science. We give an overview over and some background on modeling with crosscovariance models. The R package RandomFields supports the simulation, the parameter estimation and the prediction in particular for the linear model of coregionalization, the multivariate Matérn models, the delay model, and a spectrum of physically motivated vector valued models. An example on weather data is considered, illustrating the use of RandomFields for parameter estimation and prediction.
  • Item
    Topology identification of complex network via chaotic ant swarm algorithm
    (New York, NY : Hindawi Publishing Corporation, 2013) Peng, H.; Li, L.; Kurths, J.; Li, S.; Yang, Y.
    Nowadays, the topology of complex networks is essential in various fields as engineering, biology, physics, and other scientific fields. We know in some general cases that there may be some unknown structure parameters in a complex network. In order to identify those unknown structure parameters, a topology identification method is proposed based on a chaotic ant swarm algorithm in this paper. The problem of topology identification is converted into that of parameter optimization which can be solved by a chaotic ant algorithm. The proposed method enables us to identify the topology of the synchronization network effectively. Numerical simulations are also provided to show the effectiveness and feasibility of the proposed method.
  • Item
    A reconfigurable logic cell based on a simple dynamical system
    (New York, NY : Hindawi Publishing Corporation, 2013) Li, L.; Yang, C.; Hui, S.; Yu, W.; Kurths, J.; Peng, H.; Yang, Y.
    This paper introduces a new scheme to achieve a dynamic logic gate which can be adjusted flexibly to obtain different logic functions by adjusting specific parameters of a dynamical system. Based on graphical tools and the threshold mechanism, the distribution of different logic gates is studied, and a transformation method between different logics is given. Analyzing the performance of the dynamical system in the presence of noise, we discover that it is resistant to system noise. Moreover, we find some part of the system can be considered as a leaky integrator which has been already widely applied in engineering. Finally, we provide a proof-of-principle hardware implementation of the proposed scheme to illustrate its effectiveness. With the proposed scheme in hand, it is convenient to build the flexible, robust, and general purpose computing devices such as various network coding routers, communication encoders or decoders, and reconfigurable computer chips.
  • Item
    Effective Numerical Algorithm for Simulations of Beam Stabilization in Broad Area Semiconductor Lasers and Amplifiers
    (Milton Park : Taylor and Francis Ltd., 2014) Radziunas, M.; Čiegis, R.
    Abstract: A 2 + 1 dimensional PDE traveling wave model describing spatial-lateral dynamics of edge-emitting broad area semiconductor devices is considered. A numerical scheme based on a split-step Fourier method is presented. The domain decomposition method is used to parallelize the sequential algorithm. The parallel algorithm is implemented by using Message Passing Interface system, results of computational experiments are presented and the scalability of the algorithm is analyzed. Simulations of the model equations are used for optimizing of existing devices with respect to the emitted beam quality, as well as for creating and testing of novel device design concepts.
  • Item
    Algebraic K-theory and Motivic Cohomology
    (Zürich : EMS Publ. House, 2013) Huber-Klawitter, Annette; Jannsen, Uwe; Levine, Marc
    Algebraic K-theory and motivic cohomology are strongly related tools providing a systematic way of producing invariants for algebraic or geometric structures. The definition and methods are taken from algebraic topology, but there have been particularly fruitful applications to problems of algebraic geometry, number theory or quadratic forms. 19 one-hour talks presented a wide range of latest results on the theory and its applications.
  • Item
    Algebraische Zahlentheorie
    (Zürich : EMS Publ. House, 2014) Kings, Guido; Sujatha, Ramdorai; Venjakob, Otmar
    The workshop brought together leading experts in Algebraic Number Theory. The talks presented new methods and results that intertwine a multitude of topics ranging from classical diophantine themes to modern arithmetic geometry, modular forms and p-adic aspects in number theory.
  • Item
    Analytic Number Theory
    (Zürich : EMS Publ. House, 2013) Montgomery, Hugh L.; Vaughan, Robert C.; Wooley, Trevor D.
    Analytic number theory has florished over the past few years, and this workshop brought together world leaders and young talent to discuss developments in various branches of the subject.
  • Item
    Algebraic Groups
    (Zürich : EMS Publ. House, 2013) Jantzen, Jens Carsten; Reichstein, Zinovy
    Linear algebraic groups is an active research area in contemporary mathematics. It has rich connections to algebraic geometry, representation theory, algebraic combinatorics, number theory, algebraic topology, and differential equations. The foundations of this theory were laid by A. Borel, C. Chevalley, T. A. Springer and J. Tits in the second half of the 20th century. The Oberwolfach workshops on algebraic groups, led by Springer and Tits, played an important role in this effort as a forum for researchers, meeting at approximately 3 year intervals since the 1960s. The present workshop continued this tradition, featuring a number of important recent developments in the subject.