Search Results

Now showing 1 - 8 of 8
  • Item
    On nonlocal Cahn-Hilliard-Navier-Stokes systems in two dimensions
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2014) Frigeri, Sergio; Gal, Cipian G.; Grasselli, Maurizio
    We consider a diffuse interface model which describes the motion of an incompressible isothermal mixture of two immiscible fluids. This model consists of the Navier-Stokes equations coupled with a convective nonlocal Cahn-Hilliard equation. Several results were already proven by two of the present authors. However, in the two-dimensional case, the uniqueness of weak solutions was still open. Here we establish such a result even in the case of degenerate mobility and singular potential. Moreover, we show the strong-weak uniqueness in the case of viscosity depending on the order parameter, provided that the mobility is constant and the potential is regular. In the case of constant viscosity, on account of the uniqueness results we can deduce the connectedness of the global attractor whose existence was obtained in a previous paper. The uniqueness technique can be adapted to show the validity of a smoothing property for the difference of two trajectories which is crucial to establish the existence of an exponential attractor.
  • Item
    The factorization method for inverse elastic scattering from periodic structures
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2013) Hu, Guanghui; Lu, Yulong; Zhang, Bo
    This paper is concerned with the inverse scattering of time-harmonic elastic waves from rigid periodic structures. We establish the factorization method to identify an unknown grating surface from knowledge of the scattered compressional or shear waves measured on a line above the scattering surface. Near-field operators are factorized by selecting appropriate incident waves derived from quasi-periodic half-space Green’s tensor to the Navier equation. The factorization method gives rise to a uniqueness result for the inverse scattering problem by utilizing only the compressional or shear components of the scattered field corresponding to all quasi-periodic incident plane waves with a common phase-shift. A number of computational examples are provided to show the accuracy of the inversion algorithms, with an emphasis placed on comparing reconstructions from the scattered near-field and those from its compressional and shear components.
  • Item
    Uniqueness in inverse elastic scattering from unbounded rigid surfaces of rectangular type
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2014) Elschner, Johannes; Hu, Guanghui; Yamamoto, Masahiro
    Consider the two-dimensional inverse elastic scattering problem of recovering a piecewise linear rigid rough or periodic surface of rectangular type for which the neighboring line segments are always perpendicular.We prove the global uniqueness with at most two incident elastic plane waves by using near-field data. If the Lamé constants satisfy a certain condition, then the data of a single plane wave is sufficient to imply the uniqueness. Our proof is based on a transcendental equation for the Navier equation, which is derived from the expansion of analytic solutions to the Helmholtz equation. The uniqueness results apply also to an inverse scattering problem for non-convex bounded rigid bodies of rectangular type.
  • Item
    Unique determination of balls and polyhedral scatterers with a single point source wave
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2014) Hu, Guanghui; Liu, Xiaodong
    In this paper, we prove uniqueness in determining a sound-soft ball or polyhedral scatterer in the inverse acoustic scattering problem with a single incident point source wave in RN (N = 2, 3). Our proofs rely on the reflection principle for the Helmholtz equation with respect to a Dirichlet hyperplane or sphere, which is essentially a 'point-to-point extension formula. The method has been adapted to proving uniqueness in inverse scattering from sound-soft cavities with interior measurement data incited by a single point source. The corresponding uniqueness for sound-hard balls or polyhedral scatterers has also been discussed.
  • Item
    Corners and edges always scatter
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2014) Elschner, Johannes; Hu, Guanghui
    Consider time-harmonic acoustic scattering problems governed by the Helmholtz equation in two and three dimensions. We prove that bounded penetrable obstacles with corners or edges scatter every incident wave nontrivially, provided the function of refractive index is real-analytic. Moreover, if such a penetrable obstacle is a convex polyhedron or polygon, then its shape can be uniquely determined by the far-field pattern over all observation directions incited by a single incident wave. Our arguments are elementary and rely on the expansion of solutions to the Helmholtz equation.
  • Item
    Generalized gradient flow structure of internal energy driven phase field systems
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2015) Bonetti, Elena; Rocca, Elisabetta
    In this paper we introduce a general abstract formulation of a variational thermomechanical model, by means of a unified derivation via a generalization of the principle of virtual powers for all the variables of the system, including the thermal one. In particular, choosing as thermal variable the entropy of the system, and as driving functional the internal energy, we get a gradient flow structure (in a suitable abstract setting) for the whole nonlinear PDE system. We prove a global in time existence of (weak) solutions result for the Cauchy problem associated to the abstract PDE system as well as uniqueness in case of suitable smoothness assumptions on the functionals.
  • Item
    Ground states and concentration phenomena for the fractional Schrödinger equation
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2014) Fall, Mouhamed Moustapha; Mahmoudi, Fethi; Valdinoci, Enrico
    We consider here solutions of the nonlinear fractional Schrödinger equation. We show that concentration points must be critical points for the potential. We also prove that, if the potential is coercive and has a unique global minimum, then ground states concentrate suitably at such minimal point. In addition, if the potential is radial, then the minimizer is unique.
  • Item
    Properties of the solutions of delocalised coagulation and inception problems with outflow boundaries
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2015) Patterson, Robert I.A.
    Well posedness is established for a family of equations modelling particle populations undergoing delocalised coagulation, advection, inflow and outflow in a externally specified velocity field. Very general particle types are allowed while the spatial domain is a bounded region of d-dimensional space for which every point lies on exactly one streamline associated with the velocity field. The problem is formulated as a semi-linear ODE in the Banach space of bounded measures on particle position and type space. A local Lipschitz property is established in total variation norm for the propagators (generalised semi-groups) associated with the problem and used to construct a Picard iteration that establishes local existence and global uniqueness for any initial condition. The unique weak solution is shown further to be a differentiable or at least bounded variation strong solution under smoothness assumptions on the parameters of the coagulation interaction. In the case of one spatial dimension strong differentiability is established even for coagulation parameters with a particular bounded variation structure in space. This one dimensional extension establishes the convergence of the simulation processes studied in [Patterson, textitStoch. Anal. Appl. 31, 2013] to a unique and differentiable limit.