Search Results

Now showing 1 - 3 of 3
  • Item
    Hybrid Optical Fibers – An Innovative Platform for In‐Fiber Photonic Devices
    (Weinheim : Wiley-VCH, 2015) Alexander Schmidt, Markus; Argyros, Alexander; Sorin, Fabien
    The field of hybrid optical fibers is one of the most active research areas in current fiber optics and has the vision of integrating sophisticated materials inside fibers, which are not traditionally used in fiber optics. Novel in-fiber devices with unique properties have been developed, opening up new directions for fiber optics in fields of critical interest in modern research, such as biophotonics, environmental science, optoelectronics, metamaterials, remote sensing, medicine, or quantum optics. Here the recent progress in the field of hybrid optical fibers is reviewed from an application perspective, focusing on fiber-integrated devices enabled by including novel materials inside polymer and glass fibers. The topics discussed range from nanowire-based plasmonics and hyperlenses, to integrated semiconductor devices such as optoelectronic detectors, and intense light generation unlocked by highly nonlinear hybrid waveguides.
  • Item
    Quantifying texture evolution during hot rolling of AZ31 Twin Roll Cast strip
    (London [u.a.] : Institute of Physics, 2015) Gorelova, S.; Schaeben, H.; Skrotzki, Werner; Oertel, Carl-Georg
    Multi-pass rolling experiments with an AZ31 Twin Roll Cast (TRC) alloy were performed on an industrial scaled four-high rolling mill. Within the rolling with an intermediate annealing the evolution of texture was investigated. To quantify the extent of preferred crystallographic orientation experimental X-ray pole figures were measured after different process steps and analyzed using the free and open Matlab® toolbox MTEX for texture analysis. The development of the fiber texture was observed and analyzed in dependence on rolling conditions. In the initial state the specimen exhibits a texture composed of a weak basal texture and a cast texture with {0001}-planes oriented across the rolling direction. During the following rolling process a fiber texture was developed. The expected strength increment of the fiber texture was quantitatively confirmed in terms of volume portions of the orientation density function around the fiber and in terms of the canonical parameters of fitted pseudo Bingham distributions. On the results of this work a model for prediction of the texture evolution during the strip rolling of magnesium in the examined parameter range was developed.
  • Item
    Electrospinning of ultrafine metal oxide/carbon and metal carbide/carbon nanocomposite fibers
    (London : RSC Publishing, 2015) Atchison, Jennifer S.; Zeiger, Marco; Tolosa, Aura; Funke, Lena M.; Jäckel, Nicolas; Presser, Volker
    Electrospinning has emerged as a facile technology for the synthesis of ultrafine fibers and even nanofibers of various materials. While carbon nanofibers have been extensively investigated, there have also been studies reported on metal oxide and metal carbide fibers. Yet, comparative studies, especially following the same general synthesis approach, are lacking. In our comprehensive study, we use a sol gel process by which a carrier polymer (cellulose acetate or polyvinylpyrrolidone) is mixed with titanium butoxide, zirconium(IV) acetylacetonate, or niobium n-butoxide to yield nanotextured titania/carbon, zirconia/carbon, or niobia/carbon nonwoven textiles. Carbothermal reduction between 1300 °C and 1700 °C effectively transforms the metal oxide/carbon fibers to metal carbide/carbon nanocomposite while preserving the fiber integrity. As a beneficial effect, the fiber diameter decreases compared to the as-spun state and we obtained ultrafine fibers: 294 ± 108 nm for ZrC/C, 122 ± 28 nm for TiC/C, and 65 ± 36 nm for NbC/C. The highly disordered and porous nature of the carbon matrix engulfing the metal carbide nanocrystals enables a high specific surface area of up to 450 m2 g−1 (TiC/C) after carbothermal reduction.