Search Results

Now showing 1 - 2 of 2
  • Item
    Classification and quantification of pore shapes in sandstone reservoir rocks with 3-D X-ray micro-computed tomography
    (Göttingen : Copernicus Publ., 2016) Schmitt, Mayka; Halisch, Matthias; Müller, Cornelia; Fernandes, Celso Peres
    Recent years have seen a growing interest in the characterization of the pore morphologies of reservoir rocks and how the spatial organization of pore traits affects the macro behavior of rock–fluid systems. With the availability of 3-D high-resolution imaging, such as x-ray micro-computed tomography (µ-CT), the detailed quantification of particle shapes has been facilitated by progress in computer science. Here, we show how the shapes of irregular rock particles (pores) can be classified and quantified based on binary 3-D images. The methodology requires the measurement of basic 3-D particle descriptors (length, width, and thickness) and a shape classification that involves the similarity of artificial objects, which is based on main pore network detachments and 3-D sample sizes. Two main pore components were identified from the analyzed volumes: pore networks and residual pore ganglia. A watershed algorithm was applied to preserve the pore morphology after separating the main pore networks, which is essential for the pore shape characterization. The results were validated for three sandstones (S1, S2, and S3) from distinct reservoirs, and most of the pore shapes were found to be plate- and cube-like, ranging from 39.49 to 50.94 % and from 58.80 to 45.18 % when the Feret caliper descriptor was investigated in a 10003 voxel volume. Furthermore, this study generalizes a practical way to correlate specific particle shapes, such as rods, blades, cuboids, plates, and cubes to characterize asymmetric particles of any material type with 3-D image analysis.
  • Item
    Development of a numerical workflow based on μ-CT imaging for the determination of capillary pressure–saturation-specific interfacial area relationship in 2-phase flow pore-scale porous-media systems: a case study on Heletz sandstone
    (Göttingen : Copernicus Publ., 2016) Peche, Aaron; Halisch, Matthias; Bogdan Tatomir, Alexandru; Sauter, Martin
    In this case study, we present the implementation of a finite element method (FEM)-based numerical pore-scale model that is able to track and quantify the propagating fluid–fluid interfacial area on highly complex micro-computed tomography (μ-CT)-obtained geometries. Special focus is drawn to the relationship between reservoir-specific capillary pressure (pc), wetting phase saturation (Sw) and interfacial area (awn). The basis of this approach is high-resolution μ-CT images representing the geometrical characteristics of a georeservoir sample. The successfully validated 2-phase flow model is based on the Navier–Stokes equations, including the surface tension force, in order to consider capillary effects for the computation of flow and the phase-field method for the emulation of a sharp fluid–fluid interface. In combination with specialized software packages, a complex high-resolution modelling domain can be obtained. A numerical workflow based on representative elementary volume (REV)-scale pore-size distributions is introduced. This workflow aims at the successive modification of model and model set-up for simulating, such as a type of 2-phase problem on asymmetric μ-CT-based model domains. The geometrical complexity is gradually increased, starting from idealized pore geometries until complex μ-CT-based pore network domains, whereas all domains represent geostatistics of the REV-scale core sample pore-size distribution. Finally, the model can be applied to a complex μ-CT-based model domain and the pc–Sw–awn relationship can be computed.