Search Results

Now showing 1 - 10 of 13
  • Item
    Complex networks for climate model evaluation with application to statistical versus dynamical modeling of South American climate
    (Heidelberg : Springer, 2014) Feldhoff, Jan H.; Lange, Stefan; Volkholz, Jan; Donges, Jonathan F.; Kurths, Jürgen; Gerstengarbe, Friedrich-Wilhelm
    In this study we introduce two new node-weighted difference measures on complex networks as a tool for climate model evaluation. The approach facilitates the quantification of a model’s ability to reproduce the spatial covariability structure of climatological time series. We apply our methodology to compare the performance of a statistical and a dynamical regional climate model simulating the South American climate, as represented by the variables 2 m temperature, precipitation, sea level pressure, and geopotential height field at 500 hPa. For each variable, networks are constructed from the model outputs and evaluated against a reference network, derived from the ERA-Interim reanalysis, which also drives the models. We compare two network characteristics, the (linear) adjacency structure and the (nonlinear) clustering structure, and relate our findings to conventional methods of model evaluation. To set a benchmark, we construct different types of random networks and compare them alongside the climate model networks. Our main findings are: (1) The linear network structure is better reproduced by the statistical model statistical analogue resampling scheme (STARS) in summer and winter for all variables except the geopotential height field, where the dynamical model CCLM prevails. (2) For the nonlinear comparison, the seasonal differences are more pronounced and CCLM performs almost as well as STARS in summer (except for sea level pressure), while STARS performs better in winter for all variables.
  • Item
    Prevention and trust evaluation scheme based on interpersonal relationships for large-scale peer-to-peer networks
    (New York, NY : Hindawi Publishing Corporation, 2014) Li, L.; Kurths, J.; Yang, Y.; Liu, G.
    In recent years, the complex network as the frontier of complex system has received more and more attention. Peer-to-peer (P2P) networks with openness, anonymity, and dynamic nature are vulnerable and are easily attacked by peers with malicious behaviors. Building trusted relationships among peers in a large-scale distributed P2P system is a fundamental and challenging research topic. Based on interpersonal relationships among peers of large-scale P2P networks, we present prevention and trust evaluation scheme, called IRTrust. The framework incorporates a strategy of identity authentication and a global trust of peers to improve the ability of resisting the malicious behaviors. It uses the quality of service (QoS), quality of recommendation (QoR), and comprehensive risk factor to evaluate the trustworthiness of a peer, which is applicable for large-scale unstructured P2P networks. The proposed IRTrust can defend against several kinds of malicious attacks, such as simple malicious attacks, collusive attacks, strategic attacks, and sybil attacks. Our simulation results show that the proposed scheme provides greater accuracy and stronger resistance compared with existing global trust schemes. The proposed scheme has potential application in secure P2P network coding.
  • Item
    Recurrence networks-a novel paradigm for nonlinear time series analysis
    (College Park, MD : Institute of Physics Publishing, 2010) Donner, R.V.; Zou, Y.; Donges, J.F.; Marwan, N.; Kurths, J.
    This paper presents a new approach for analysing the structural properties of time series from complex systems. Starting from the concept of recurrences in phase space, the recurrence matrix of a time series is interpreted as the adjacency matrix of an associated complex network, which links different points in time if the considered states are closely neighboured in phase space. In comparison with similar network-based techniques the new approach has important conceptual advantages, and can be considered as a unifying framework for transforming time series into complex networks that also includes other existing methods as special cases. It has been demonstrated here that there are fundamental relationships between many topological properties of recurrence networks and different nontrivial statistical properties of the phase space density of the underlying dynamical system. Hence, this novel interpretation of the recurrence matrix yields new quantitative characteristics (such as average path length, clustering coefficient, or centrality measures of the recurrence network) related to the dynamical complexity of a time series, most of which are not yet provided by other existing methods of nonlinear time series analysis. © IOP Publishing Ltd and Deutsche Physikalische Gesellschaft.
  • Item
    Order patterns networks (orpan) - A method to estimate time-evolving functional connectivity from multivariate time series
    (Lausanne : Frontiers Research Foundation, 2012) Schinkel, S.; Zamora-López, G.; Dimigen, O.; Sommer, W.; Kurths, J.
    Complex networks provide an excellent framework for studying the function of the human brain activity. Yet estimating functional networks from measured signals is not trivial, especially if the data is non-stationary and noisy as it is often the case with physiological recordings. In this article we propose a method that uses the local rank structure of the data to define functional links in terms of identical rank structures. The method yields temporal sequences of networks which permits to trace the evolution of the functional connectivity during the time course of the observation. We demonstrate the potentials of this approach with model data as well as with experimental data from an electrophysiological study on language processing.
  • Item
    The complexity of gene expression dynamics revealed by permutation entropy
    (London : BioMed Central Ltd., 2010) Sun, Xiaoliang; Zou, Yong; Nikiforova, Victoria; Kurths, Jürgen; Walther, Dirk
    Background: High complexity is considered a hallmark of living systems. Here we investigate the complexity of temporal gene expression patterns using the concept of Permutation Entropy (PE) first introduced in dynamical systems theory. The analysis of gene expression data has so far focused primarily on the identification of differentially expressed genes, or on the elucidation of pathway and regulatory relationships. We aim to study gene expression time series data from the viewpoint of complexity.Results: Applying the PE complexity metric to abiotic stress response time series data in Arabidopsis thaliana, genes involved in stress response and signaling were found to be associated with the highest complexity not only under stress, but surprisingly, also under reference, non-stress conditions. Genes with house-keeping functions exhibited lower PE complexity. Compared to reference conditions, the PE of temporal gene expression patterns generally increased upon stress exposure. High-complexity genes were found to have longer upstream intergenic regions and more cis-regulatory motifs in their promoter regions indicative of a more complex regulatory apparatus needed to orchestrate their expression, and to be associated with higher correlation network connectivity degree. Arabidopsis genes also present in other plant species were observed to exhibit decreased PE complexity compared to Arabidopsis specific genes.Conclusions: We show that Permutation Entropy is a simple yet robust and powerful approach to identify temporal gene expression profiles of varying complexity that is equally applicable to other types of molecular profile data.
  • Item
    General scaling of maximum degree of synchronization in noisy complex networks
    (Bristol : Institute of Physics Publishing, 2014) Traxl, D.; Boers, N.; Kurths, J.
    The effects of white noise and global coupling strength on the maximum degree of synchronization in complex networks are explored. We perform numerical simulations of generic oscillator models with both linear and non-linear coupling functions on a broad spectrum of network topologies. The oscillator models include the Fitzhugh-Nagumo model, the Izhikevich model and the Kuramoto phase oscillator model. The network topologies range from regular, random and highly modular networks to scale-free and small-world networks, with both directed and undirected edges. We then study the dependency of the maximum degree of synchronization on the global coupling strength and the noise intensity. We find a general scaling of the synchronizability, and quantify its validity by fitting a regression model to the numerical data.
  • Item
    Detours around basin stability in power networks
    (Bristol : Institute of Physics Publishing, 2014) Schultz, P.; Heitzig, J.; Kurths, J.
    To analyse the relationship between stability against large perturbations and topological properties of a power transmission grid, we employ a statistical analysis of a large ensemble of synthetic power grids, looking for significant statistical relationships between the single-node basin stability measure and classical as well as tailormade weighted network characteristics. This method enables us to predict poor values of single-node basin stability for a large extent of the nodes, offering a node-wise stability estimation at low computational cost. Further, we analyse the particular function of certain network motifs to promote or degrade the stability of the system. Here we uncover the impact of so-called detour motifs on the appearance of nodes with a poor stability score and discuss the implications for power grid design.
  • Item
    Individual nodes contribution to the mesoscale of complex networks
    (Bristol : Institute of Physics Publishing, 2014) Klimm, F.; Borge-Holthoefer, J.; Wessel, N.; Kurths, J.; Zamora-Lopez, G.
    The analysis of complex networks is devoted to the statistical characterization of the topology of graphs at different scales of organization in order to understand their functionality. While the modular structure of networks has become an essential element to better apprehend their complexity, the efforts to characterize the mesoscale of networks have focused on the identification of the modules rather than describing the mesoscale in an informative manner. Here we propose a framework to characterize the position every node takes within the modular configuration of complex networks and to evaluate their function accordingly. For illustration, we apply this framework to a set of synthetic networks, empirical neural networks, and to the transcriptional regulatory network of the Mycobacterium tuberculosis. We find that the architecture of both neuronal and transcriptional networks are optimized for the processing of multisensory information with the coexistence of well-defined modules of specialized components and the presence of hubs conveying information from and to the distinct functional domains.
  • Item
    Characterizing time series: When Granger causality triggers complex networks
    (Bristol : Institute of Physics Publishing, 2012) Ge, T.; Cui, Y.; Lin, W.; Kurths, J.; Liu, C.
    In this paper, we propose a new approach to characterize time series with noise perturbations in both the time and frequency domains by combining Granger causality and complex networks. We construct directed and weighted complex networks from time series and use representative network measures to describe their physical and topological properties. Through analyzing the typical dynamical behaviors of some physical models and the MIT-BIH 7 human electrocardiogram data sets, we show that the proposed approach is able to capture and characterize various dynamics and has much potential for analyzing real-world time series of rather short length.