Search Results

Now showing 1 - 5 of 5
  • Item
    Regional effects of atmospheric aerosols on temperature: An evaluation of an ensemble of online coupled models
    (Katlenburg-Lindau : EGU, 2017) Baró, Rocío; Palacios-Peña, Laura; Baklanov, Alexander; Balzarini, Alessandra; Brunner, Dominik; Forkel, Renate; Hirtl, Marcus; Honzak, Luka; Pérez, Juan Luis; Pirovano, Guido; San José, Roberto; Schröder, Wolfram; Werhahn, Johannes; Wolke, Ralf; Žabkar, Rahela; Jiménez-Guerrero, Pedro
    The climate effect of atmospheric aerosols is associated with their influence on the radiative budget of the Earth due to the direct aerosol-radiation interactions (ARIs) and indirect effects, resulting from aerosol-cloud-radiation interactions (ACIs). Online coupled meteorology-chemistry models permit the description of these effects on the basis of simulated atmospheric aerosol concentrations, although there is still some uncertainty associated with the use of these models. Thus, the objective of this work is to assess whether the inclusion of atmospheric aerosol radiative feedbacks of an ensemble of online coupled models improves the simulation results for maximum, mean and minimum temperature at 2m over Europe. The evaluated models outputs originate from EuMetChem COST Action ES1004 simulations for Europe, differing in the inclusion (or omission) of ARI and ACI in the various models. The cases studies cover two important atmospheric aerosol episodes over Europe in the year 2010: (i) a heat wave event and a forest fire episode (July-August 2010) and (ii) a more humid episode including a Saharan desert dust outbreak in October 2010. The simulation results are evaluated against observational data from the E-OBS gridded database. The results indicate that, although there is only a slight improvement in the bias of the simulation results when including the radiative feedbacks, the spatiotemporal variability and correlation coefficients are improved for the cases under study when atmospheric aerosol radiative effects are included.
  • Item
    Profiling of Saharan dust from the Caribbean to western Africa - Part 2: Shipborne lidar measurements versus forecasts
    (Katlenburg-Lindau : EGU, 2017) Ansmann, Albert; Rittmeister, Franziska; Engelmann, Ronny; Basart, Sara; Jorba, Oriol; Spyrou, Christos; Remy, Samuel; Skupin, Annett; Baars, Holger; Seifert, Patric; Senf, Fabian; Kanitz, Thomas
    A unique 4-week ship cruise from Guadeloupe to Cabo Verde in April-May 2013 see part 1, Rittmeister et al. (2017) is used for an in-depth comparison of dust profiles observed with a polarization/Raman lidar aboard the German research vessel Meteor over the remote tropical Atlantic and respective dust forecasts of a regional (SKIRON) and two global atmospheric (dust) transport models (NMMB/BSC-Dust, MACC/CAMS). New options of model-observation comparisons are presented. We analyze how well the modeled fine dust (submicrometer particles) and coarse dust contributions to light extinction and mass concentration match respective lidar observations, and to what extent models, adjusted to aerosol optical thickness observations, are able to reproduce the observed layering and mixing of dust and non-dust (mostly marine) aerosol components over the remote tropical Atlantic. Based on the coherent set of dust profiles at well-defined distances from Africa (without any disturbance by anthropogenic aerosol sources over the ocean), we investigate how accurately the models handle dust removal at distances of 1500g km to more than 5000g km west of the Saharan dust source regions. It was found that (a) dust predictions are of acceptable quality for the first several days after dust emission up to 2000g km west of the African continent, (b) the removal of dust from the atmosphere is too strong for large transport paths in the global models, and (c) the simulated fine-to-coarse dust ratio (in terms of mass concentration and light extinction) is too high in the models compared to the observations. This deviation occurs initially close to the dust sources and then increases with distance from Africa and thus points to an overestimation of fine dust emission in the models.
  • Item
    Heterogeneous ice nucleation on dust particles sourced from nine deserts worldwide - Part 1: Immersion freezing
    (Katlenburg-Lindau : EGU, 2016) Boose, Yvonne; Welti, André; Atkinson, James; Ramelli, Fabiola; Danielczok, Anja; Bingemer, Heinz G.; Plötze, Michael; Sierau, Berko; Kanji, Zamin A.; Lohmann, Ulrike
    Desert dust is one of the most abundant ice nucleating particle types in the atmosphere. Traditionally, clay minerals were assumed to determine the ice nucleation ability of desert dust and constituted the focus of ice nucleation studies over several decades. Recently some feldspar species were identified to be ice active at much higher temperatures than clay minerals, redirecting studies to investigate the contribution of feldspar to ice nucleation on desert dust. However, so far no study has shown the atmospheric relevance of this mineral phase. For this study four dust samples were collected after airborne transport in the troposphere from the Sahara to different locations (Crete, the Peloponnese, Canary Islands, and the Sinai Peninsula). Additionally, 11 dust samples were collected from the surface from nine of the biggest deserts worldwide. The samples were used to study the ice nucleation behavior specific to different desert dusts. Furthermore, we investigated how representative surface-collected dust is for the atmosphere by comparing to the ice nucleation activity of the airborne samples. We used the IMCA-ZINC setup to form droplets on single aerosol particles which were subsequently exposed to temperatures between 233 and 250 K. Dust particles were collected in parallel on filters for offline cold-stage ice nucleation experiments at 253–263 K. To help the interpretation of the ice nucleation experiments the mineralogical composition of the dusts was investigated. We find that a higher ice nucleation activity in a given sample at 253 K can be attributed to the K-feldspar content present in this sample, whereas at temperatures between 238 and 245 K it is attributed to the sum of feldspar and quartz content present. A high clay content, in contrast, is associated with lower ice nucleation activity. This confirms the importance of feldspar above 250 K and the role of quartz and feldspars determining the ice nucleation activities at lower temperatures as found by earlier studies for monomineral dusts. The airborne samples show on average a lower ice nucleation activity than the surface-collected ones. Furthermore, we find that under certain conditions milling can lead to a decrease in the ice nucleation ability of polymineral samples due to the different hardness and cleavage of individual mineral phases causing an increase of minerals with low ice nucleation ability in the atmospherically relevant size fraction. Comparison of our data set to an existing desert dust parameterization confirms its applicability for climate models. Our results suggest that for an improved prediction of the ice nucleation ability of desert dust in the atmosphere, the modeling of emission and atmospheric transport of the feldspar and quartz mineral phases would be key, while other minerals are only of minor importance.
  • Item
    Triple-wavelength depolarization-ratio profiling of Saharan dust over Barbados during SALTRACE in 2013 and 2014
    (Katlenburg-Lindau : EGU, 2017) Haarig, Moritz; Ansmann, Albert; Althausen, Dietrich; Klepel, André; Groß, Silke; Freudenthaler, Volker; Toledano, Carlos; Mamouri, Rodanthi-Elisavet; Farrell, David A.; Prescod, Damien A.; Marinou, Eleni; Burton, Sharon P.; Gasteiger, Josef; Engelmann, Ronny; Baars, Holger
    Triple-wavelength polarization lidar measurements in Saharan dust layers were performed at Barbados (13.1°N, 59.6°W), 5000-8000km west of the Saharan dust sources, in the framework of the Saharan Aerosol Long-range Transport and Aerosol-Cloud-Interaction Experiment (SALTRACE-1, June-July 2013, SALTRACE-3, June-July 2014). Three case studies are discussed. High quality was achieved by comparing the dust linear depolarization ratio profiles measured at 355, 532, and 1064nm with respective dual-wavelength (355, 532nm) depolarization ratio profiles measured with a reference lidar. A unique case of long-range transported dust over more than 12000km is presented. Saharan dust plumes crossing Barbados were measured with an airborne triple-wavelength polarization lidar over Missouri in the midwestern United States 7 days later. Similar dust optical properties and depolarization features were observed over both sites indicating almost unchanged dust properties within this 1 week of travel from the Caribbean to the United States. The main results of the triple-wavelength polarization lidar observations in the Caribbean in the summer seasons of 2013 and 2014 are summarized. On average, the particle linear depolarization ratios for aged Saharan dust were found to be 0.252±0.030 at 355nm, 0.280±0.020 at 532nm, and 0.225±0.022 at 1064nm after approximately 1 week of transport over the tropical Atlantic. Based on published simulation studies we present an attempt to explain the spectral features of the depolarization ratio of irregularly shaped mineral dust particles, and conclude that most of the irregularly shaped coarse-mode dust particles (particles with diameters > 1μm) have sizes around 1.5-2μm. The SALTRACE results are also set into the context of the SAMUM-1 (Morocco, 2006) and SAMUM-2 (Cabo Verde, 2008) depolarization ratio studies. Again, only minor changes in the dust depolarization characteristics were observed on the way from the Saharan dust sources towards the Caribbean.
  • Item
    Fennec dust forecast intercomparison over the Sahara in June 2011
    (Katlenburg-Lindau : EGU, 2016) Chaboureau, Jean-Pierre; Flamant, Cyrille; Dauhut, Thibaut; Kocha, Cécile; Lafore, Jean-Philippe; Lavaysse, Chistophe; Marnas, Fabien; Mokhtari, Mohamed; Pelon, Jacques; Reinares Martínez, Irene; Schepanski, Kerstin; Tulet, Pierre
    In the framework of the Fennec international programme, a field campaign was conducted in June 2011 over the western Sahara. It led to the first observational data set ever obtained that documents the dynamics, thermodynamics and composition of the Saharan atmospheric boundary layer (SABL) under the influence of the heat low. In support to the aircraft operation, four dust forecasts were run daily at low and high resolutions with convection-parameterizing and convection-permitting models, respectively. The unique airborne and ground-based data sets allowed the first ever intercomparison of dust forecasts over the western Sahara. At monthly scale, large aerosol optical depths (AODs) were forecast over the Sahara, a feature observed by satellite retrievals but with different magnitudes. The AOD intensity was correctly predicted by the high-resolution models, while it was underestimated by the low-resolution models. This was partly because of the generation of strong near-surface wind associated with thunderstorm-related density currents that could only be reproduced by models representing convection explicitly. Such models yield emissions mainly in the afternoon that dominate the total emission over the western fringes of the Adrar des Iforas and the Aïr Mountains in the high-resolution forecasts. Over the western Sahara, where the harmattan contributes up to 80 % of dust emission, all the models were successful in forecasting the deep well-mixed SABL. Some of them, however, missed the large near-surface dust concentration generated by density currents and low-level winds. This feature, observed repeatedly by the airborne lidar, was partly forecast by one high-resolution model only.