Search Results

Now showing 1 - 10 of 40
  • Item
    Boundary conditions for electrochemical interfaces
    (Bristol : IOP Publishing, 2017) Landstorfer, Manuel
    Consistent boundary conditions for electrochemical interfaces, which cover double layer charging, pseudo-capacitive effects and transfer reactions, are of high demand in electrochemistry and adjacent disciplines. Mathematical modeling and optimization of electrochemical systems is a strongly emerging approach to reduce cost and increase efficiency of super-capacitors, batteries, fuel cells, and electro-catalysis. However, many mathematical models which are used to describe such systems lack a real predictive value. Origin of this shortcoming is the usage of oversimplified boundary conditions. In this work we derive the boundary conditions for some general electrode-electrolyte interface based on non-equilibrium thermodynamics for volumes and surfaces. The resulting equations are widely applicable and cover also tangential transport. The general framework is then applied to a specific material model which allows the deduction of a current-voltage relation and thus a comparison to experimental data. Some simplified 1D examples show the range of applicability of the new approach.
  • Item
    Improved Capacitive Deionization Performance of Mixed Hydrophobic / Hydrophilic Activated Carbon Electrodes
    (Bristol : IOP Publishing, 2016) Aslan, Mesut; Zeiger, Marco; Jäckel, Nicolas; Grobelsek, Ingrid; Weingarth, Daniel; Presser, Volker
    Capacitive deionization (CDI) is a promising salt removal technology with high energy efficiency when applied to low molar concentration aqueous electrolytes. As an interfacial process, ion electrosorption during CDI operation is sensitive to the pore structure and the total pore volume of carbon electrodes limit the maximum salt adsorption capacity (SAC). Thus, activation of carbons as a widely used method to enhance the porosity of a material should also be highly attractive for improving SAC values. In our study, we use easy-to-scale and facile-to-apply CO2 activation at temperatures between 950 °C and 1020 °C to increase the porosity of commercially available activated carbon. While the pore volume and surface area can be significantly increased up to 1.51 cm3/g and 2113 m2/g, this comes at the expense of making the carbon more hydrophobic. We present a novel strategy to still capitalize the improved pore structure by admixing as received (more hydrophilic) carbon with CO2 treated (more hydrophobic) carbon for CDI electrodes without using membranes. This translates in an enhanced charge storage ability in high and low molar concentrations (1 M and 5 mM NaCl) and significantly improved CDI performance (at 5 mM NaCl). In particular, we obtain stable CDI performance at 0.86 charge efficiency with 13.1 mg/g SAC for an optimized 2:1 mixture (by mass).
  • Item
    National contributions for decarbonizing the world economy in line with the G7 agreement
    (Bristol : IOP Publishing, 2016) du Pont, Yann Robiou; Jeffery, M. Louise; Gütschow, Johannes; Christoff, Peter; Meinshausen, Malte
    In June 2015, the G7 agreed to two global mitigation goals: 'a decarbonization of the global economy over the course of this century' and 'the upper end of the latest Intergovernmental Panel on Climate Change (IPCC) recommendation of 40%–70% reductions by 2050 compared to 2010'. These IPCC recommendations aim to preserve a likely (>66%) chance of limiting global warming to 2 °C but are not necessarily consistent with the stronger ambition of the subsequent Paris Agreement of 'holding the increase in the global average temperature to well below 2 °C above pre-industrial levels and to pursue efforts to limit the temperature increase to 1.5 °C above pre-industrial levels'. The G7 did not specify global or national emissions scenarios consistent with its own agreement. Here we identify global cost-optimal emissions scenarios from Integrated Assessment Models that match the G7 agreement. These scenarios have global 2030 emissions targets of 11%–43% below 2010, global net negative CO2 emissions starting between 2056 and 2080, and some exhibit net negative greenhouse gas emissions from 2080 onwards. We allocate emissions from these global scenarios to countries according to five equity approaches representative of the five equity categories presented in the Fifth Assessment Report of the IPCC (IPCCAR5): 'capability', 'equality', 'responsibility-capability-need', 'equal cumulative per capita' and 'staged approaches'. Our results show that G7 members' Intended Nationally Determined Contribution (INDCs) mitigation targets are in line with a grandfathering approach but lack ambition to meet various visions of climate justice. The INDCs of China and Russia fall short of meeting the requirements of any allocation approach. Depending on how their INDCs are evaluated, the INDCs of India and Brazil can match some equity approaches evaluated in this study.
  • Item
    Fabrication of silicon nanowire arrays by near-field laser ablation and metal-assisted chemical etching
    (Bristol : IOP Publishing, 2016) Brodoceanu, Daniel; Alhmoud, Hashim Z.; Elnathan, Roey; Delalat, Bahman; Voelcker, Nicolas H.; Kraus, Tobias
    We present an elegant route for the fabrication of ordered arrays of vertically-aligned silicon nanowires with tunable geometry at controlled locations on a silicon wafer. A monolayer of transparent microspheres convectively assembled onto a gold-coated silicon wafer acts as a microlens array. Irradiation with a single nanosecond laser pulse removes the gold beneath each focusing microsphere, leaving behind a hexagonal pattern of holes in the gold layer. Owing to the near-field effects, the diameter of the holes can be at least five times smaller than the laser wavelength. The patterned gold layer is used as catalyst in a metal-assisted chemical etching to produce an array of vertically-aligned silicon nanowires. This approach combines the advantages of direct laser writing with the benefits of parallel laser processing, yielding nanowire arrays with controlled geometry at predefined locations on the silicon surface. The fabricated VA-SiNW arrays can effectively transfect human cells with a plasmid encoding for green fluorescent protein.
  • Item
    Teleconnected food supply shocks
    (Bristol : IOP Publishing, 2016) Bren d'Amour, Christopher; Wenz, Leonie; Kalkuhl, Matthias; Steckel, Jan Christoph; Creutzig, Felix
    The 2008–2010 food crisis might have been a harbinger of fundamental climate-induced food crises with geopolitical implications. Heat-wave-induced yield losses in Russia and resulting export restrictions led to increases in market prices for wheat across the Middle East, likely contributing to the Arab Spring. With ongoing climate change, temperatures and temperature variability will rise, leading to higher uncertainty in yields for major nutritional crops. Here we investigate which countries are most vulnerable to teleconnected supply-shocks, i.e. where diets strongly rely on the import of wheat, maize, or rice, and where a large share of the population is living in poverty. We find that the Middle East is most sensitive to teleconnected supply shocks in wheat, Central America to supply shocks in maize, and Western Africa to supply shocks in rice. Weighing with poverty levels, Sub-Saharan Africa is most affected. Altogether, a simultaneous 10% reduction in exports of wheat, rice, and maize would reduce caloric intake of 55 million people living in poverty by about 5%. Export bans in major producing regions would put up to 200 million people below the poverty line at risk, 90% of which live in Sub-Saharan Africa. Our results suggest that a region-specific combination of national increases in agricultural productivity and diversification of trade partners and diets can effectively decrease future food security risks.
  • Item
    A network-based approach for semi-quantitative knowledge mining and its application to yield variability
    (Bristol : IOP Publishing, 2016) Schauberger, Bernhard; Rolinski, Susanne; Müller, Christoph
    Variability of crop yields is detrimental for food security. Under climate change its amplitude is likely to increase, thus it is essential to understand the underlying causes and mechanisms. Crop models are the primary tool to project future changes in crop yields under climate change. A systematic overview of drivers and mechanisms of crop yield variability (YV) can thus inform crop model development and facilitate improved understanding of climate change impacts on crop yields. Yet there is a vast body of literature on crop physiology and YV, which makes a prioritization of mechanisms for implementation in models challenging. Therefore this paper takes on a novel approach to systematically mine and organize existing knowledge from the literature. The aim is to identify important mechanisms lacking in models, which can help to set priorities in model improvement. We structure knowledge from the literature in a semi-quantitative network. This network consists of complex interactions between growing conditions, plant physiology and crop yield. We utilize the resulting network structure to assign relative importance to causes of YV and related plant physiological processes. As expected, our findings confirm existing knowledge, in particular on the dominant role of temperature and precipitation, but also highlight other important drivers of YV. More importantly, our method allows for identifying the relevant physiological processes that transmit variability in growing conditions to variability in yield. We can identify explicit targets for the improvement of crop models. The network can additionally guide model development by outlining complex interactions between processes and by easily retrieving quantitative information for each of the 350 interactions. We show the validity of our network method as a structured, consistent and scalable dictionary of literature. The method can easily be applied to many other research fields.
  • Item
    Reducing greenhouse gas emissions in agriculture without compromising food security?
    (Bristol : IOP Publishing, 2017) Frank, Stefan; Havlík, Petr; Soussana, Jean-François; Levesque, Antoine; Wollenberg, Eva; Kleinwechter, Ulrich; Fricko, Oliver; Gusti, Mykola; Herrero, Mario; Smith, Pete; Hasegawa, Tomoko; Kraxner, Florian; Obersteiner, Michael
    To keep global warming possibly below 1.5 °C and mitigate adverse effects of climate change, agriculture, like all other sectors, will have to contribute to efforts in achieving net negative emissions by the end of the century. Cost-efficient distribution of mitigation across regions and economic sectors is typically calculated using a global uniform carbon price in climate stabilization scenarios. However, in reality such a carbon price would substantially affect food availability. Here, we assess the implications of climate change mitigation in the land use sector for agricultural production and food security using an integrated partial equilibrium modelling framework and explore ways of relaxing the competition between mitigation in agriculture and food availability. Using a scenario that limits global warming cost-efficiently across sectors to 1.5 °C, results indicate global food calorie losses ranging from 110–285 kcal per capita per day in 2050 depending on the applied demand elasticities. This could translate into a rise in undernourishment of 80–300 million people in 2050. Less ambitious greenhouse gas (GHG) mitigation in the land use sector reduces the associated food security impact significantly, however the 1.5 °C target would not be achieved without additional reductions outside the land use sector. Efficiency of GHG mitigation will also depend on the level of participation globally. Our results show that if non-Annex-I countries decide not to contribute to mitigation action while other parties pursue their mitigation efforts to reach the global climate target, food security impacts in these non-Annex-I countries will be higher than if they participate in a global agreement, as inefficient mitigation increases agricultural production costs and therefore food prices. Land-rich countries with a high proportion of emissions from land use change, such as Brazil, could reduce emissions with only a marginal effect on food availability. In contrast, agricultural mitigation in high population (density) countries, such as China and India, would lead to substantial food calorie loss without a major contribution to global GHG mitigation. Increasing soil carbon sequestration on agricultural land would allow reducing the implied calorie loss by 65% when sticking to the initially estimated land use mitigation requirements, thereby limiting the impact on undernourishment to 20–75 million people, and storing significant amounts of carbon in soils.
  • Item
    Impacts devalue the potential of large-scale terrestrial CO2 removal through biomass plantations
    (Bristol : IOP Publishing, 2016) Boysen, L.R.; Lucht, W.; Gerten, D.; Heck, V.
    Large-scale biomass plantations (BPs) are often considered a feasible and safe climate engineering proposal for extracting carbon from the atmosphere and, thereby, reducing global mean temperatures. However, the capacity of such terrestrial carbon dioxide removal (tCDR) strategies and their larger Earth system impacts remain to be comprehensively studied—even more so under higher carbon emissions and progressing climate change. Here, we use a spatially explicit process-based biosphere model to systematically quantify the potentials and trade-offs of a range of BP scenarios dedicated to tCDR, representing different assumptions about which areas are convertible. Based on a moderate CO2 concentration pathway resulting in a global mean warming of 2.5 °C above preindustrial level by the end of this century—similar to the Representative Concentration Pathway (RCP) 4.5—we assume tCDR to be implemented when a warming of 1.5 °C is reached in year 2038. Our results show that BPs can slow down the progression of increasing cumulative carbon in the atmosphere only sufficiently if emissions are reduced simultaneously like in the underlying RCP4.5 trajectory. The potential of tCDR to balance additional, unabated emissions leading towards a business-as-usual pathway alike RCP8.5 is therefore very limited. Furthermore, in the required large-scale applications, these plantations would induce significant trade-offs with food production and biodiversity and exert impacts on forest extent, biogeochemical cycles and biogeophysical properties.
  • Item
    Investigating potential transferability of place-based research in land system science
    (Bristol : IOP Publishing, 2016) Václavík, Tomáš; Langerwisch, Fanny; Cotter, Marc; Fick, Johanna; Häuser, Inga; Hotes, Stefan; Kamp, Johannes; Settele, Josef; Spangenberg, Joachim H.; Seppelt, Ralf
    Much of our knowledge about land use and ecosystem services in interrelated social-ecological systems is derived from place-based research. While local and regional case studies provide valuable insights, it is often unclear how relevant this research is beyond the study areas. Drawing generalized conclusions about practical solutions to land management from local observations and formulating hypotheses applicable to other places in the world requires that we identify patterns of land systems that are similar to those represented by the case study. Here, we utilize the previously developed concept of land system archetypes to investigate potential transferability of research from twelve regional projects implemented in a large joint research framework that focus on issues of sustainable land management across four continents. For each project, we characterize its project archetype, i.e. the unique land system based on a synthesis of more than 30 datasets of land-use intensity, environmental conditions and socioeconomic indicators. We estimate the transferability potential of project research by calculating the statistical similarity of locations across the world to the project archetype, assuming higher transferability potentials in locations with similar land system characteristics. Results show that areas with high transferability potentials are typically clustered around project sites but for some case studies can be found in regions that are geographically distant, especially when values of considered variables are close to the global mean or where the project archetype is driven by large-scale environmental or socioeconomic conditions. Using specific examples from the local case studies, we highlight the merit of our approach and discuss the differences between local realities and information captured in global datasets. The proposed method provides a blueprint for large research programs to assess potential transferability of place-based studies to other geographical areas and to indicate possible gaps in research efforts.
  • Item
    Photosynthetic productivity and its efficiencies in ISIMIP2a biome models: Benchmarking for impact assessment studies
    (Bristol : IOP Publishing, 2017) Ito, Akihiko; Nishina, Kazuya; Reyer, Christopher P.O.; François, Louis; Henrot, Alexandra-Jane; Munhoven, Guy; Jacquemin, Ingrid; Tian, Hanqin; Yang, Jia; Pan, Shufen; Morfopoulos, Catherine; Betts, Richard; Hickler, Thomas; Steinkamp, Jörg; Ostberg, Sebastian; Schaphoff, Sibyll; Ciais, Philippe; Chang, Jinfeng; Rafique, Rashid; Zeng, Ning; Zhao, Fang
    Simulating vegetation photosynthetic productivity (or gross primary production, GPP) is a critical feature of the biome models used for impact assessments of climate change. We conducted a benchmarking of global GPP simulated by eight biome models participating in the second phase of the Inter-Sectoral Impact Model Intercomparison Project (ISIMIP2a) with four meteorological forcing datasets (30 simulations), using independent GPP estimates and recent satellite data of solar-induced chlorophyll fluorescence as a proxy of GPP. The simulated global terrestrial GPP ranged from 98 to 141 Pg C yr−1 (1981–2000 mean); considerable inter-model and inter-data differences were found. Major features of spatial distribution and seasonal change of GPP were captured by each model, showing good agreement with the benchmarking data. All simulations showed incremental trends of annual GPP, seasonal-cycle amplitude, radiation-use efficiency, and water-use efficiency, mainly caused by the CO2 fertilization effect. The incremental slopes were higher than those obtained by remote sensing studies, but comparable with those by recent atmospheric observation. Apparent differences were found in the relationship between GPP and incoming solar radiation, for which forcing data differed considerably. The simulated GPP trends co-varied with a vegetation structural parameter, leaf area index, at model-dependent strengths, implying the importance of constraining canopy properties. In terms of extreme events, GPP anomalies associated with a historical El Niño event and large volcanic eruption were not consistently simulated in the model experiments due to deficiencies in both forcing data and parameterized environmental responsiveness. Although the benchmarking demonstrated the overall advancement of contemporary biome models, further refinements are required, for example, for solar radiation data and vegetation canopy schemes.