Search Results

Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Item

In-situ terahertz optical Hall effect measurements of ambient effects on free charge carrier properties of epitaxial graphene

2017, Knight, Sean, Hofmann, Tino, Bouhafs, Chamseddine, Armakavicius, Nerijus, Kühne, Philipp, Stanishev, Vallery, Ivanov, Ivan G., Yakimova, Rositsa, Wimer, Shawn, Schubert, Mathias, Darakchieva, Vanya

Unraveling the doping-related charge carrier scattering mechanisms in two-dimensional materials such as graphene is vital for limiting parasitic electrical conductivity losses in future electronic applications. While electric field doping is well understood, assessment of mobility and density as a function of chemical doping remained a challenge thus far. In this work, we investigate the effects of cyclically exposing epitaxial graphene to controlled inert gases and ambient humidity conditions, while measuring the Lorentz force-induced birefringence in graphene at Terahertz frequencies in magnetic fields. This technique, previously identified as the optical analogue of the electrical Hall effect, permits here measurement of charge carrier type, density, and mobility in epitaxial graphene on silicon-face silicon carbide. We observe a distinct, nearly linear relationship between mobility and electron charge density, similar to field-effect induced changes measured in electrical Hall bar devices previously. The observed doping process is completely reversible and independent of the type of inert gas exposure.

Loading...
Thumbnail Image
Item

Collocated observations of cloud condensation nuclei, particle size distributions, and chemical composition

2017, Schmale, Julia, Henning, Silvia, Henzing, Bas, Keskinen, Helmi, Sellegri, Karine, Ovadnevaite, Jurgita, Bougiatioti, Aikaterini, Kalivitis, Nikos, Stavroulas, Iasonas, Jefferson, Anne, Park, Minsu, Schlag, Patrick, Kristensson, Adam, Iwamoto, Yoko, Pringle, Kirsty, Reddington, Carly, Aalto, Pasi, Äijälä, Mikko, Baltensperger, Urs, Bialek, Jakub, Birmili, Wolfram, Bukowiecki, Nicolas, Ehn, Mikael, Fjæraa, Ann Mari, Fiebig, Markus, Frank, Göran, Fröhlich, Roman, Frumau, Arnoud, Furuya, Masaki, Hammer, Emanuel, Heikkinen, Liine, Herrmann, Erik, Holzinger, Rupert, Hyono, Hiroyuki, Kanakidou, Maria, Kiendler-Scharr, Astrid, Kinouchi, Kento, Kos, Gerard, Kulmala, Markku, Mihalopoulos, Nikolaos, Motos, Ghislain, Nenes, Athanasios, O’Dowd, Colin, Paramonov, Mikhail, Petäjä, Tuukka, Picard, David, Poulain, Laurent, Prévôt, André Stephan Henry, Slowik, Jay, Sonntag, Andre, Swietlicki, Erik, Svenningsson, Birgitta, Tsurumaru, Hiroshi, Wiedensohler, Alfred, Wittbom, Cerina, Ogren, John A., Matsuki, Atsushi, Yum, Seong Soo, Myhre, Cathrine Lund, Carslaw, Ken, Stratmann, Frank, Gysel, Martin

Cloud condensation nuclei (CCN) number concentrations alongside with submicrometer particle number size distributions and particle chemical composition have been measured at atmospheric observatories of the Aerosols, Clouds, and Trace gases Research InfraStructure (ACTRIS) as well as other international sites over multiple years. Here, harmonized data records from 11 observatories are summarized, spanning 98,677 instrument hours for CCN data, 157,880 for particle number size distributions, and 70,817 for chemical composition data. The observatories represent nine different environments, e.g., Arctic, Atlantic, Pacific and Mediterranean maritime, boreal forest, or high alpine atmospheric conditions. This is a unique collection of aerosol particle properties most relevant for studying aerosol-cloud interactions which constitute the largest uncertainty in anthropogenic radiative forcing of the climate. The dataset is appropriate for comprehensive aerosol characterization (e.g., closure studies of CCN), model-measurement intercomparison and satellite retrieval method evaluation, among others. Data have been acquired and processed following international recommendations for quality assurance and have undergone multiple stages of quality assessment.